forked from kserve/kserve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframework_scikit_test.go
116 lines (102 loc) · 2.87 KB
/
framework_scikit_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
Copyright 2020 kubeflow.org.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package v1alpha2
import (
"fmt"
"testing"
"github.com/kubeflow/kfserving/pkg/constants"
"github.com/onsi/gomega"
"github.com/onsi/gomega/types"
v1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
)
func TestFrameworkSKLearn(t *testing.T) {
g := gomega.NewGomegaWithT(t)
scenarios := map[string]struct {
spec SKLearnSpec
matcher types.GomegaMatcher
}{
"AcceptGoodRuntimeVersion": {
spec: SKLearnSpec{
RuntimeVersion: DefaultSKLearnRuntimeVersion,
},
matcher: gomega.Succeed(),
},
}
for name, scenario := range scenarios {
config := &InferenceServicesConfig{
Predictors: &PredictorsConfig{
SKlearn: PredictorConfig{
ContainerImage: "kfserving/sklearnserver",
DefaultImageVersion: "latest",
},
},
}
g.Expect(scenario.spec.Validate(config)).Should(scenario.matcher, fmt.Sprintf("Testing %s", name))
}
}
func TestCreateSKLearnModelServingContainer(t *testing.T) {
var requestedResource = v1.ResourceRequirements{
Limits: v1.ResourceList{
"cpu": resource.Quantity{
Format: "100",
},
},
Requests: v1.ResourceList{
"cpu": resource.Quantity{
Format: "90",
},
},
}
var config = InferenceServicesConfig{
Predictors: &PredictorsConfig{
SKlearn: PredictorConfig{
ContainerImage: "someOtherImage",
DefaultImageVersion: "0.1.0",
},
},
}
var spec = SKLearnSpec{
StorageURI: "gs://someUri",
Resources: requestedResource,
RuntimeVersion: "0.1.0",
}
g := gomega.NewGomegaWithT(t)
expectedContainer := &v1.Container{
Image: "someOtherImage:0.1.0",
Name: constants.InferenceServiceContainerName,
Resources: requestedResource,
Args: []string{
"--model_name=someName",
"--model_dir=/mnt/models",
"--http_port=8080",
},
}
// Test Create with config
container := spec.GetContainer("someName", 0, &config)
g.Expect(container).To(gomega.Equal(expectedContainer))
// Test parallelism
expectedParallelism := &v1.Container{
Image: "someOtherImage:0.1.0",
Name: constants.InferenceServiceContainerName,
Resources: requestedResource,
Args: []string{
"--model_name=someName",
"--model_dir=/mnt/models",
"--http_port=8080",
"--workers=2",
},
}
containerWithPar := spec.GetContainer("someName", 2, &config)
g.Expect(containerWithPar).To(gomega.Equal(expectedParallelism))
}