-
Notifications
You must be signed in to change notification settings - Fork 583
/
fenwick_tree.go
616 lines (559 loc) · 18.7 KB
/
fenwick_tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
package copypasta
import (
"math"
"sort"
)
/* 树状数组(Fenwick Tree),二叉索引树(Binary Index Tree, BIT)
https://en.wikipedia.org/wiki/Fenwick_tree
【推荐阅读】带你发明树状数组!https://leetcode.cn/problems/range-sum-query-mutable/solution/dai-ni-fa-ming-shu-zhuang-shu-zu-fu-shu-lyfll/
可视化 https://visualgo.net/zh/fenwicktree
todo 树状数组延申应用 https://www.luogu.com.cn/blog/kingxbz/shu-zhuang-shuo-zu-zong-ru-men-dao-ru-fen
浅谈树状数组的优化及扩展 https://www.luogu.com.cn/blog/countercurrent-time/qian-tan-shu-zhuang-shuo-zu-you-hua
浅谈树状数组套权值树 https://www.luogu.com.cn/blog/bfqaq/qian-tan-shu-zhuang-shuo-zu-quan-zhi-shu
https://oi-wiki.org/ds/bit/
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/FenwickTree.java.html
- [307. 区域和检索 - 数组可修改](https://leetcode.cn/problems/range-sum-query-mutable/) *模板题
- https://www.luogu.com.cn/problem/P3374
- [315. 计算右侧小于当前元素的个数](https://leetcode.cn/problems/count-of-smaller-numbers-after-self/) *逆序对
- [2426. 满足不等式的数对数目](https://leetcode.cn/problems/number-of-pairs-satisfying-inequality/) 2030
- [3072. 将元素分配到两个数组中 II](https://leetcode.cn/problems/distribute-elements-into-two-arrays-ii/) 2053
- [493. 翻转对](https://leetcode.cn/problems/reverse-pairs/)
- [327. 区间和的个数](https://leetcode.cn/problems/count-of-range-sum/)
- [2519. 统计 K-Big 索引的数量](https://leetcode.cn/problems/count-the-number-of-k-big-indices/)(会员题)
- [2613. 美数对](https://leetcode.cn/problems/beautiful-pairs/)(会员题)*曼哈顿最近点对
关于逆序对,见下面的 cntInversions
https://codeforces.com/problemset/problem/1234/D 1600
https://leetcode.cn/problems/shu-zu-zhong-de-ni-xu-dui-lcof/
https://atcoder.jp/contests/arc075/tasks/arc075_c
静态区间种类 - 离线做法
https://www.luogu.com.cn/problem/P1972
https://atcoder.jp/contests/abc174/tasks/abc174_f
https://codeforces.com/problemset/problem/246/E
置换 LC2179 https://leetcode.cn/problems/count-good-triplets-in-an-array/
- 同样的置换思想 LC1713 https://leetcode.cn/problems/minimum-operations-to-make-a-subsequence/
题目推荐 https://cp-algorithms.com/data_structures/fenwick.html#toc-tgt-12
树状数组的性质能使其支持动态 [1,x] 或 [x,n] 范围上的最值更新查询等操作
https://codeforces.com/problemset/problem/629/D
https://codeforces.com/problemset/problem/1635/F
好题 https://www.luogu.com.cn/problem/P2345 https://www.luogu.com.cn/problem/P5094
多变量统计 https://codeforces.com/problemset/problem/1194/E
T4 https://www.nowcoder.com/discuss/1022136
最多交换 k 次相邻字母后,得到的最小字典序
- LC1505 https://leetcode.cn/problems/minimum-possible-integer-after-at-most-k-adjacent-swaps-on-digits/
LC2921 https://leetcode.cn/problems/maximum-profitable-triplets-with-increasing-prices-ii/
https://codeforces.com/problemset/problem/1915/F 1500
https://codeforces.com/problemset/problem/1234/D 1600
https://codeforces.com/problemset/problem/627/B 1700 模板题
https://codeforces.com/problemset/problem/652/D 1800 区间包含计数
https://codeforces.com/problemset/problem/597/C 1900 长为 k 的上升子序列个数
https://codeforces.com/problemset/problem/961/E 1900(不止一种做法)
https://codeforces.com/problemset/problem/629/D 2000
https://codeforces.com/problemset/problem/1891/F 2000 离线 树 回溯
https://codeforces.com/problemset/problem/703/D 2100 区间元素去重后的异或和
- 联系 https://www.luogu.com.cn/problem/P1972
https://codeforces.com/problemset/problem/1660/F2 2100 建模
https://codeforces.com/problemset/problem/301/D 2200 整除对统计
https://codeforces.com/problemset/problem/369/E 2200 区间统计技巧
https://codeforces.com/problemset/problem/1045/G 2200 离散化
https://codeforces.com/problemset/problem/1194/E 2200 多变量统计
https://codeforces.com/problemset/problem/1167/F 2300
https://codeforces.com/problemset/problem/1967/C 2300
https://codeforces.com/problemset/problem/12/D 2400 三维偏序
https://codeforces.com/problemset/problem/246/E 2400
https://codeforces.com/problemset/problem/1334/F 2500
https://codeforces.com/problemset/problem/1635/F 2800
https://atcoder.jp/contests/abc256/tasks/abc256_f 多重前缀和
https://www.lanqiao.cn/problems/5131/learning/?contest_id=144
贡献 https://www.lanqiao.cn/problems/12467/learning/?contest_id=167
https://codeforces.com/gym/101649 I 题
http://poj.org/problem?id=2155
http://poj.org/problem?id=2886
*/
const fenwickInitVal = 0 // -1e18
type fenwick []int
func newFenwickTree(n int) fenwick {
t := make(fenwick, n+1)
for i := range t {
t[i] = fenwickInitVal
}
return t
}
func (fenwick) op(a, b int) int {
return a + b // max(a, b)
}
// a[i] 增加 val
// 1<=i<=n
func (f fenwick) update(i, val int) {
for ; i < len(f); i += i & -i {
f[i] = f.op(f[i], val)
}
}
// 求前缀和 a[1] + ... + a[i]
// 1<=i<=n
func (f fenwick) pre(i int) int {
res := fenwickInitVal
i = min(i, len(f)-1)
for ; i > 0; i &= i - 1 {
res = f.op(res, f[i])
}
return res
}
// 求区间和 a[l] + ... + a[r]
// 1<=l<=r<=n
func (f fenwick) query(l, r int) int {
if r < l {
return 0
}
return f.pre(r) - f.pre(l-1)
}
// 离线二维数点
// 对于每个询问,回答:a[l:r+1] 中有多少个值在 [lower, upper] 中的数
// 转换成:a[:r+1] 中的值在 [lower, upper] 中的数,减去 a[:l] 中的值在 [lower, upper] 中的数
// 一边遍历 a,一边更新【值域树状数组】,一边回答离线后的询问
// 所有下标均从 0 开始
// https://codeforces.com/problemset/problem/1899/G 1900
func areaPointCountOffline(a []int, queries []struct{ l, r, lower, upper int }) []int {
// 注:如果值域大,可以先把 a[i] 离散化,lower 和 upper 二分转换一下
type data struct{ lower, upper, sign, qid int }
qs := make([][]data, len(a))
for i, q := range queries {
l, r, lower, upper := q.l, q.r, q.lower, q.upper
if l > 0 {
qs[l-1] = append(qs[l-1], data{lower, upper, -1, i})
}
qs[r] = append(qs[r], data{lower, upper, 1, i})
}
ans := make([]int, len(queries))
t := newFenwickTree(len(a)) // 值域树状数组
for i, v := range a {
t.update(v, 1)
for _, p := range qs[i] {
ans[p.qid] += p.sign * t.query(p.lower, p.upper)
}
}
return ans
}
//
// 差分版本
// 参考《算法竞赛进阶指南》《挑战程序设计竞赛》
// 利用差分数组,实现 O(log n) 的区间加、区间查询
// a[1] = diff[1]
// a[2] = diff[1] + diff[2]
// a[m] = diff[1] + ... + diff[m]
// 所以 a[1] + ... + a[m]
// = ∑(m-i+1)*diff[i]
// = (m+1)∑diff[i] - ∑i*diff[i]
// https://ac.nowcoder.com/acm/problem/50454
// https://codeforces.com/problemset/problem/383/C 2000
// https://codeforces.com/problemset/problem/916/E 2400
// todo 二维差分 上帝造题的七分钟 https://www.luogu.com.cn/problem/P4514
// todo 离线询问(按 x y 分组)https://codeforces.com/contest/1824/problem/D
// [0] 维护 ∑diff[i]
// [1] 维护 ∑i*diff[i]
// 为了更好地利用缓存,写成 [][2] 而不是 [2][]
type fenwickDiff [][2]int
func newFenwickTreeDiff(n int) fenwickDiff {
return make(fenwickDiff, n+1)
}
func (t fenwickDiff) _add(i, val int) {
for iv := i * val; i < len(t); i += i & -i {
t[i][0] += val
t[i][1] += iv
}
}
// a[l] 到 a[r] 增加 val
// 1<=l<=r<=n
func (t fenwickDiff) add(l, r, val int) {
t._add(l, val)
t._add(r+1, -val)
}
// 求前缀和 a[1] + ... + a[i]
// 1<=i<=n
func (t fenwickDiff) pre(i0 int) int {
var s0, s1 int
for i := i0; i > 0; i &= i - 1 {
s0 += t[i][0]
s1 += t[i][1]
}
return (i0+1)*s0 - s1
}
// 求区间和 a[l] + ... + a[r]
// 1<=l<=r<=n
func (t fenwickDiff) query(l, r int) int {
return t.pre(r) - t.pre(l-1)
}
//
// 二维差分树状数组
// https://codeforces.com/problemset/problem/869/E 2400
type fenwickDiff2 [][]int
func newFenwickTreeDiff2(n, m int) fenwickDiff2 {
t := make(fenwickDiff2, n+1)
for i := range t {
t[i] = make([]int, m+1)
}
return t
}
func (t fenwickDiff2) add(x, y, val int) {
for i := x; i < len(t); i += i & -i {
for j := y; j < len(t[i]); j += j & -j {
t[i][j] += val
}
}
}
// 二维矩阵左上角 (x1,y1) 右下角 (x2,y2) 区域增加 val
// 下标从 1 开始
func (t fenwickDiff2) update(x1, y1, x2, y2, val int) {
t.add(x1, y1, val)
t.add(x1, y2+1, -val)
t.add(x2+1, y1, -val)
t.add(x2+1, y2+1, val)
}
// 获取二维矩阵 (x,y) 的值
// 下标从 1 开始
func (t fenwickDiff2) get(x, y int) (res int) {
for i := x; i > 0; i &= i - 1 {
for j := y; j > 0; j &= j - 1 {
res += t[i][j]
}
}
return
}
//
// 树套树:树状数组套动态开点权值线段树
// 三维偏序 https://www.luogu.com.cn/problem/P3810 https://www.luogu.com.cn/record/136178821
// 二逼平衡树 https://www.luogu.com.cn/problem/P3380 https://www.luogu.com.cn/record/136286395
// 树状数组在这里就是纯纯工具人,只用来拆分区间
// 注:如果 TLE 可以使用 func init() { debug.SetGCPercent(-1) } 加速
type fenwickWithSeg []*stNode // 见 segment_tree.go
func newFenwickTreeWithSeg(n, mx int) fenwickWithSeg {
t := make(fenwickWithSeg, n+1)
for i := range t {
t[i] = newStRoot(0, mx) // 注意下界
}
return t
}
// 二维单点更新:位置 (i,j) 用 val 更新
func (f fenwickWithSeg) update(i, j, val int) {
for ; i < len(f); i += i & -i {
f[i].update(j, val)
}
}
// 二维前缀和:累加所有 x <= i 且 y <= j 的值
func (f fenwickWithSeg) pre(i, j int) (res int) {
for ; i > 0; i &= i - 1 {
res += f[i].query(0, j) // 注意下界
}
return
}
// 返回 [l,r] 内 v 的排名,即小于 v 的元素个数 + 1
func (f fenwickWithSeg) rank(l, r, v int) int {
return f.pre(r, v-1) - f.pre(l-1, v-1) + 1
}
// 返回 [l,r] 内的第 k 个数(设为 v),即有 k-1 个数小于 v
// 需要保证 1 <= k <= r-l+1
func (f fenwickWithSeg) kth(l, r, k int) int {
var ar, al []*stNode // 如果禁止 GC,需要把这行放在外面,然后用下面注释的两行代码(复用内存)
//ar = ar[:0]
//al = al[:0]
for ; r > 0; r &= r - 1 {
ar = append(ar, f[r])
}
for l--; l > 0; l &= l - 1 {
al = append(al, f[l])
}
left, right := 0, f[0].r
for left < right {
s := 0
for _, o := range ar {
s += o.lo.val
}
for _, o := range al {
s -= o.lo.val
}
mid := (left + right) >> 1
if s >= k {
for i, o := range ar {
ar[i] = o.lo
}
for i, o := range al {
al[i] = o.lo
}
right = mid
} else {
k -= s
for i, o := range ar {
ar[i] = o.ro
}
for i, o := range al {
al[i] = o.ro
}
left = mid + 1
}
}
return left
}
// 返回 [l,r] 内严格小于 v 的最大的数
// 如果不存在,返回 math.MinInt
func (f fenwickWithSeg) prev(l, r, v int) int {
rk := f.rank(l, r, v)
if rk == 1 { // 没有比 v 小的数
return math.MinInt
}
return f.kth(l, r, rk-1)
}
// 返回 [l,r] 内严格大于 v 的最小的数
// 如果不存在,返回 math.MaxInt
func (f fenwickWithSeg) next(l, r, v int) int {
rk := f.rank(l, r, v+1)
if rk > r-l+1 { // [l,r] 内的所有数都 <= v
return math.MaxInt
}
return f.kth(l, r, rk)
}
//
func _(n int) {
tree := make([]int, n+1)
add := func(i, val int) {
for ; i < len(tree); i += i & -i {
tree[i] += val
}
}
sum := func(i int) (res int) {
for ; i > 0; i &= i - 1 {
res += tree[i]
}
return
}
query := func(l, r int) int { return sum(r) - sum(l-1) } // [l,r]
// 差分树状数组,可用于区间更新+单点查询 queryOne(i) = a[i] + sum(i) // a 从 1 开始
// r+1 即使超过 n 也没关系,因为不会用到
// 模板题 https://www.luogu.com.cn/problem/P3368
addRange := func(l, r, val int) { add(l, val); add(r+1, -val) } // [l,r]
// 求权值树状数组第 k 小的数(k > 0)
// 这里 tree[i] 表示 i 的个数
// 返回最小的 x 满足 ∑i=[1..x] tree[i] >= k
// 思路类似倍增的查询,不断寻找 ∑<k 的数,最后 +1 就是答案
// https://oi-wiki.org/ds/fenwick/#tricks
//
// https://codeforces.com/blog/entry/61364
// https://codeforces.com/problemset/problem/1404/C
// todo https://codeforces.com/contest/992/problem/E
// https://atcoder.jp/contests/abc287/tasks/abc287_g
// 二分 https://www.luogu.com.cn/problem/P4137
// - 代码见下面的 rangeMex
kth := func(k int) (res int) {
const log = 17 // bits.Len(uint(n))
for b := 1 << (log - 1); b > 0; b >>= 1 {
if next := res | b; next < len(tree) && k > tree[next] {
k -= tree[next]
res = next
}
}
return res + 1
}
// 输出权值树状数组的 mex(这里的定义是第一个没出现的正数)
// 注意不能有重复元素
mex := func() (res int) {
const log = 17 // bits.Len(uint(n))
for b := 1 << (log - 1); b > 0; b >>= 1 {
if next := res | b; tree[next] == next {
res = next
}
}
res++ // mex
return
}
// 常数优化:O(n) 建树
// https://oi-wiki.org/ds/fenwick/#tricks
init := func(a []int) { // len(tree) = len(a) + 1
for i, v := range a {
i++
tree[i] += v
if j := i + i&-i; j < len(tree) {
tree[j] += tree[i]
}
}
}
// a 的下标从 1 开始
initFrom := func(a []int) {
for i := 1; i < len(a); i++ {
if j := i + i&-i; j < len(a) {
a[j] += a[i]
}
}
tree = a
}
// 另外一种写法(效率和算两次一样)
// https://www.luogu.com.cn/blog/countercurrent-time/qian-tan-shu-zhuang-shuo-zu-you-hua
query = func(l, r int) (s int) {
if l > r {
panic(9)
}
l--
for ; r > l; r &= r - 1 {
s += tree[r]
}
for ; l > r; l &= l - 1 {
s -= tree[l]
}
return
}
{
// 时间戳优化(通常用于多组数据+值域树状数组)https://oi-wiki.org/ds/fenwick/#%E6%97%B6%E9%97%B4%E6%88%B3%E4%BC%98%E5%8C%96
// https://codeforces.com/problemset/submission/1801/205042964
const mx int = 1e6
tree := [mx + 1]int{} // 默认都是 0
time := [mx + 1]int{}
curCase := 1 // 从 1 开始
upd := func(i int, v int) {
for ; i <= mx; i += i & -i {
if time[i] != curCase {
time[i] = curCase
tree[i] = 0 // reset
}
tree[i] += v
}
}
pre := func(i int) (res int) {
for ; i > 0; i &= i - 1 {
if time[i] == curCase {
res += tree[i]
} // 否则,相当于 res += 0
}
return
}
_, _ = upd, pre
}
// 求逆序对的方法之一
// 如果 a 范围较大则需要离散化(但这样还不如直接用归并排序)
// 归并做法见 misc.go 中的 mergeCount
// LCR 170. 交易逆序对的总数 https://leetcode.cn/problems/shu-zu-zhong-de-ni-xu-dui-lcof/
// 扩展 https://codeforces.com/problemset/problem/362/C 1900
// 环形最小逆序对 https://www.luogu.com.cn/problem/solution/P2995
// todo 扩展:某些位置上的数待定时的逆序对的期望值 https://codeforces.com/problemset/problem/1096/F
// https://codeforces.com/problemset/problem/1585/D 1900
// https://codeforces.com/edu/course/2/lesson/4/3/practice/contest/274545/problem/A
// 逆序对的奇偶性 https://www.luogu.com.cn/blog/203623/sol-p3760-tjoi2017-yi-huo-hu
// - https://ac.nowcoder.com/acm/contest/308/D
// https://codeforces.com/problemset/problem/749/E 期望 贡献
// todo https://codeforces.com/problemset/problem/911/D
// https://codeforces.com/contest/987/problem/E
// https://atcoder.jp/contests/chokudai_S001/tasks/chokudai_S001_l
// https://atcoder.jp/contests/abc296/tasks/abc296_f
// https://atcoder.jp/contests/arc136/tasks/arc136_b
// https://www.codechef.com/problems/DYNAINV?tab=statement
// https://ac.nowcoder.com/acm/problem/20861
// 1e9 范围逆序对 https://codeforces.com/problemset/problem/540/E
// 三元逆序对 https://codeforces.com/problemset/problem/61/E
// todo 互质逆序对 小白月赛 87G https://ac.nowcoder.com/acm/contest/73854/G
cntInversions := func(a []int) int {
n := len(a)
tree := make([]int, n+1)
add := func(i int) {
for ; i <= n; i += i & -i {
tree[i]++
}
}
sum := func(i int) (res int) {
for ; i > 0; i &= i - 1 {
res += tree[i]
}
return
}
invCnt := 0
for i, v := range a {
// 由于 i 从 0 开始算,这里先 sum 后 add
invCnt += i - sum(v)
add(v)
}
return invCnt
}
// 通过邻项交换,把数组 a 变成数组 b,需要的最小操作次数
// 如果无法做到,返回 -1
// https://atcoder.jp/contests/arc120/tasks/arc120_c
// LC1850 https://leetcode.cn/problems/minimum-adjacent-swaps-to-reach-the-kth-smallest-number/ 2073
minSwap := func(a, b []int) (res int) {
tree := make([]int, len(a)+1)
add := func(i int) {
for i++; i < len(tree); i += i & -i {
tree[i]++
}
}
sum := func(i int) (res int) {
for ; i > 0; i &= i - 1 {
res += tree[i]
}
return
}
pos := map[int][]int{}
for i, v := range a {
pos[v] = append(pos[v], i)
}
for i, v := range b {
p := pos[v]
if len(p) == 0 {
return -1
}
j := p[0]
pos[v] = p[1:]
res += i - sum(j)
add(j)
}
return
}
_ = []interface{}{add, sum, query, addRange, kth, mex, init, initFrom, cntInversions, minSwap}
}
// 给一个数组 a 和一些询问 qs,对每个询问计算 mex(a[l..r])
// a[i]>=0, 1<=l<=r<=n
// 遍历数组 a,记录 a[i] 最后一次出现的位置 lastPos 以及上一个 a[i] 的位置 prevPos
// 建立一个权值树状数组,维护 lastPos[v] 的前缀最小值
// 树状数组维护前缀最小值的条件是每次修改只能往小改,那么从后往前做就好了
// 将询问离线:按照右端点排序(或分组),计算 mex。原理见代码中 query 的注释
// https://www.luogu.com.cn/problem/P4137
// LC2003 https://leetcode.cn/problems/smallest-missing-genetic-value-in-each-subtree/
// - 需要将 a 转换成 DFS 序且从 0 开始,同时最终答案需要 +1
func rangeMex(a []int, qs []struct{ l, r, i int }) []int {
const mx int = 1e5 + 2
// 权值树状数组
// 这里 tree[v] = min{pos[v-lowbit(v)+1], ..., pos[v]}
tree := [mx]int{}
for i := range tree {
tree[i] = 1e9
}
// 由于树状数组的下标需要为正,将所有 v 偏移 +1
update := func(v, pos int) {
for v++; v < mx; v += v & -v {
tree[v] = min(tree[v], pos)
}
}
// 根据上面的定义,对于第一个满足 if 条件的 next,有 min{pos[1], ..., pos[next]} >= l,即 mex >= next(这里的 1~next 是偏移 +1 后的)
// 后面满足 if 的以此类推
query := func(l int) (res int) {
const log = 17 // bits.Len(uint(mx))
for b := 1 << (log - 1); b > 0; b >>= 1 {
if next := res | b; next < mx && tree[next] >= l {
res = next
}
}
return
}
n, m := len(a), len(qs)
prevPos := make([]int, n)
lastPos := make([]int, mx)
for i, v := range a {
prevPos[i] = lastPos[v]
lastPos[v] = i + 1
}
for v, pos := range lastPos {
update(v, pos)
}
ans := make([]int, m)
sort.Slice(qs, func(i, j int) bool { return qs[i].r > qs[j].r })
for i, qi := n-1, 0; i >= 0; i-- {
for ; qi < m && qs[qi].r == i+1; qi++ {
ans[qs[qi].i] = query(qs[qi].l)
}
update(a[i], prevPos[i])
}
return ans
}