-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
141 lines (105 loc) · 5.56 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# kernelPSI
[![Rdoc](http://www.rdocumentation.org/badges/version/kernelPSI)](http://www.rdocumentation.org/packages/kernelPSI)
[![CRAN status](https://www.r-pkg.org/badges/version/kernelPSI)](https://cran.r-project.org/package=kernelPSI)
[![Travis build status](https://travis-ci.org/EpiSlim/kernelPSI.svg?branch=master)](https://travis-ci.org/EpiSlim/kernelPSI)
![CRAN Downloads overall](https://cranlogs.r-pkg.org/badges/grand-total/kernelPSI)
This package implements an exhaustive framework to perform
post-selection inference with kernels.
It uses quadratic kernel association scores to measure the association between a given kernel and
an outcome of interest. These scores are used for the selection of the
kernels in a forward fashion. If kernels are defined on sets of features, this allows for non-linear feature selection; if the kernels used all belong to the same family, but with different hyperparameters, this allows for hyperparameter selection.
The selection procedure allows the
modeling of the selection event as a succession of quadratic constraints
of the outcome. Finally, under the selection event, we derive empirical
p-values to measure the significance of the effect of the selected
kernels on the outcome.
## Installation
You can install the released version of kernelPSI from [CRAN](https://CRAN.R-project.org) with:
```{r CRAN, eval=FALSE}
install.packages("kernelPSI")
```
The latest development version is directly available from [GitHub](https://github.com):
<!--
The latest version is directly available from [GitHub](https://github.com):
-->
```{r GitHub, eval=FALSE}
install.packages("devtools")
devtools::install_github("EpiSlim/kernelPSI")
```
To install the GPU version, first define the environment variable <span style="color:green"> `CUDA_HOME` </span> which points to the directory of the installed CUDA toolkit, and then enter the following commands in your R console:
```{r GPU, eval=FALSE}
install.packages("devtools")
devtools::install_github("EpiSlim/kernelPSI", ref = "GPU")
```
## Usage examples
We illustrate the use of `kernelPSI` on a toy example. For the sake of simplicity, we use linear kernels. Other commonly-used kernels are also available from the R package `kernlab`.
```{r example, results='hide', message = FALSE}
require("kernelPSI")
require("kernlab")
require("bindata")
set.seed(64)
# Generation of the covariates, the similarity matrices and the outcome
n_kernels <- 10 # total number of kernels
m_kernels <- 3 # number of kernels used to generate the outcome
size_kernels <- 5 # dimensionality of the data associated to each kernel
theta <- .05 # effect size
n <- 100 # sample size
rho <- 0.6 # correlation parameter (comprised between -1 and +1)
# Correlation matrix
corr <- outer(seq_len(size_kernels), seq_len(size_kernels),
function(i, j) return(rho^(abs(i-j))))
marg <- 0.4 # parameter for for the Bernoulli margin distributions
# Design matrix
X <- replicate(n_kernels,
rmvbin(n, margprob = rep(marg, size_kernels), bincorr = corr),
simplify = FALSE)
K <- replicate(n_kernels, vanilladot()) # full set of kernels
# Gram matrices
Kmat <- sapply(seq_len(n_kernels),
function(i) {kMatrix <- kernelMatrix(K[[i]], X[[i]]); return(as.kernelMatrix(kMatrix, center = TRUE))},
simplify = FALSE)
Ksum <- Reduce(`+`, Kmat[seq_len(m_kernels)]) # Gram matrix for the sum kernel of the first m_kernels kernels
decompK <- eigen(Ksum) # eigenvalue decomposition of the Ksum matrix
Y <- as.matrix(theta * decompK$values[1] * decompK$vectors[, 1] + rnorm(n), ncol = 1) # response vector
Lmat <- kernelMatrix(new("vanillakernel"), Y) # linear kernel of the response
```
We can now proceed to the selection of the kernels, using either the fixed or adaptive variants.
```{r selection}
candidate_kernels <- 4 # number of selected kernels for the fixed variant
selectFOHSIC <- FOHSIC(Kmat, Lmat, mKernels = candidate_kernels) # Fixed variant
selectAHSIC <- adaFOHSIC(Kmat, Lmat) # adaptive variant
```
Before drawing replicates under the selection event, we first need to model the corresponding constraints.
```{r event}
constraintFO <- forwardQ(Kmat, selectFOHSIC)
adaFO <- adaQ(Kmat, selectAHSIC[["selection"]], selectAHSIC[["n"]])
adaS <- selectAHSIC$selection[seq_len(selectAHSIC$n)] # indices of selected kernels
```
The wrapper function `kernelPSI` computes p-values for three different statistics (see documentation).
```{r}
n_replicates <- 1000 # number of replicates (to be increased for real use cases)
burn_in <- 100 # number of burn-in iterations
# Fixed variant ------------------
# selected methods: 'ridge' for the kernel ridge regression prototype
# and 'hsic' for the HSIC unbiased estimator
kernelPSI(Y, K_select = Kmat[selectFOHSIC], constraintFO, method = c("ridge", "hsic"),
n_replicates = n_replicates, burn_in = burn_in)
# Adaptive variant ------------------
# selected method: 'pca' for the kernel principal component regression prototype
kernelPSI(Y, K_select = Kmat[adaS], constraintFO, method = c("pca"),
n_replicates = n_replicates, burn_in = burn_in)
```
## References
Lotfi Slim, Clément Chatelain, Chloé-Agathe Azencott, and Jean-Philippe Vert. kernelPSI: a post-selection inference framework for nonlinear variable selection, Proceedings of the Thirty-Sixth International Conference on Machine Learning (ICML), 2019.