-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyprimes.py
104 lines (93 loc) · 3.22 KB
/
pyprimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#author: Esteban Salpeter
#author's email: esteban.salpeter@yahoo.com.ar
def primes_between(min, max, strategy=0):
#see Theory.md for reference and terminology
#strategy: 0=looping and finding, other number=set.difference
#(consumes more memory, expected to be faster)
#
#parameters check
if min > max:
print ('Error: min parameter must be lower than the max one')
return 0
if min % 10 in [2, 4, 6, 8, 0]:
min += 1
if max % 10 in [2, 4, 6, 8, 0]:
max -= 1
#the use of a set prevents duplicates
nonprimeodds = set()
#definitions
#n: half-lower-bound of a non-prime odd number
#q: a non-prime odd number
#a, b: any odd non-prime number as factors of q
#the range must be expanded since we'll look for gaps up to 2 primes,
#equals 4. We need non prime boundaries
if strategy == 0:
max += 4
min -= 4
#let's make only the necessary range by factorization
a = 3
#let's start filling and factorizing!
while a <= int(max / 3 + 1):
b = int(max / a)
if b % 10 in [2, 4, 6, 8, 0]:
b += 1
while b >= int(min / a) and b > 1 and b >= a:
#my super formula!
q = a * b
#print(a, b, q)
if q < min:
break
if q <= max:
nonprimeodds.add(q)
b -= 2
a += 2
#uncomment line below for testing purposes
#print(sorted(nonprimeodds))
if strategy == 0:
#strategy
#we'll check for the gaps in the nonprimeodds range
#there could be gaps of 4 or 6 between consecutive odds,
#meaning there is one or there are two primes there
primes = set()
nonprimeodds = sorted(nonprimeodds)
#uncomment for testing
#print(nonprimeodds)
#loop from the first up to one before the last (base 0)
for i in range(0, len(nonprimeodds) - 1):
gap = nonprimeodds[i + 1] - nonprimeodds[i]
for y in range(1, int(gap / 2)):
primes.add(nonprimeodds[i] + 2 * y)
if min in primes:
primes.remove(min)
if max in primes:
primes.remove(max)
if min + 2 in primes:
primes.remove(min + 2)
if max - 2 in primes:
primes.remove(max - 2)
else:
#strategy
#we'll produce all odd numbers in range
#then we'll produce all non-prime odd numbers in range
#finally, we'll obtain all prime numbers by difference of both sets
alloddsinrange = set(range(min, max + 1, 2))
#uncomment line below for testing purposes
#print(alloddsinrange)
#let's use the best of Python collections!
#use this line if you want to stay using sets instead of lists
primes = alloddsinrange.difference(nonprimeodds)
#primes=sorted(alloddsinrange.difference(nonprimeodds))
#uncomment for testing
#print(len(primes))
#return sorted(primes)
return primes
def is_prime(num):
if num in [1, 2, 3, 5, 7]:
return True
last = num % 10
if last in [2, 4, 5, 6, 8, 0]:
return False
p = primes_between(num - 1, num + 1, 1)
if num in p:
return True
return False