forked from alibaba-yuanjing-aigclab/ViViD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvivid.py
190 lines (148 loc) · 6.1 KB
/
vivid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
from datetime import datetime
from pathlib import Path
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config",type=str,default="./configs/prompts/test.yaml")
parser.add_argument("-W", type=int, default=384)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-L", type=int, default=24)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=20)
parser.add_argument("--fps", type=int)
args = parser.parse_args()
return args
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
subfolder="unet",
unet_additional_kwargs={
"in_channels": 5,
}
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
seed = config.get("seed",args.seed)
generator = torch.manual_seed(seed)
width, height = args.W, args.H
clip_length = config.get("L",args.L)
steps = args.steps
guidance_scale = args.cfg
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{args.W}x{args.H}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
model_video_paths = config.model_video_paths
cloth_image_paths = config.cloth_image_paths
transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
for model_image_path in model_video_paths:
src_fps = get_fps(model_image_path)
model_name = Path(model_image_path).stem
agnostic_path=model_image_path.replace("videos","agnostic")
agn_mask_path=model_image_path.replace("videos","agnostic_mask")
densepose_path=model_image_path.replace("videos","densepose")
video_tensor_list=[]
video_images=read_frames(model_image_path)
for vid_image_pil in video_images[:clip_length]:
video_tensor_list.append(transform(vid_image_pil))
video_tensor = torch.stack(video_tensor_list, dim=0) # (f, c, h, w)
video_tensor = video_tensor.transpose(0, 1)
agnostic_list=[]
agnostic_images=read_frames(agnostic_path)
for agnostic_image_pil in agnostic_images[:clip_length]:
agnostic_list.append(agnostic_image_pil)
agn_mask_list=[]
agn_mask_images=read_frames(agn_mask_path)
for agn_mask_image_pil in agn_mask_images[:clip_length]:
agn_mask_list.append(agn_mask_image_pil)
pose_list=[]
pose_images=read_frames(densepose_path)
for pose_image_pil in pose_images[:clip_length]:
pose_list.append(pose_image_pil)
video_tensor = video_tensor.unsqueeze(0)
for cloth_image_path in cloth_image_paths:
cloth_name = Path(cloth_image_path).stem
cloth_image_pil = Image.open(cloth_image_path).convert("RGB")
cloth_mask_path=cloth_image_path.replace("cloth","cloth_mask")
cloth_mask_pil = Image.open(cloth_mask_path).convert("RGB")
pipeline_output = pipe(
agnostic_list,
agn_mask_list,
cloth_image_pil,
cloth_mask_pil,
pose_list,
width,
height,
clip_length,
steps,
guidance_scale,
generator=generator,
)
video = pipeline_output.videos
video = torch.cat([video_tensor,video], dim=0)
save_videos_grid(
video,
f"{save_dir}/{model_name}_{cloth_name}_{args.H}x{args.W}_{int(guidance_scale)}_{time_str}.mp4",
n_rows=2,
fps=src_fps if args.fps is None else args.fps,
)
if __name__ == "__main__":
main()