diff --git a/R/gen_tibble.R b/R/gen_tibble.R index c2abb226..08695e22 100644 --- a/R/gen_tibble.R +++ b/R/gen_tibble.R @@ -3,11 +3,15 @@ #' A `gen_tibble` stores genotypes for individuals in a tidy format. DESCRIBE #' here the format #' -#' - *VCF* files: the fast `cpp` parser is used by default. It attempts to establish -#' ploidy from the first variant; if that variant is found in a sex chromosome (or mtDNA), -#' it will fail. To use the fast parser, change the order of variants so that the first chromosome is an -#' autosome using a tool such as `vcftools`. Alternatively, the slower but more robust -#' `vcfR` parser should be used instead. +#'- *VCF* files: the fast `cpp` parser is used by default. Both `cpp` and `vcfR` parsers +#' attempt to establish ploidy from the first variant; if that variant is found in a +#' sex chromosome (or mtDNA), the parser will fail with 'Error: a genotype has more +#' than max_ploidy alleles...'. To successful import such a *VCF*, change the order of variants +#' so that the first chromosome is an autosome using a tool such as `vcftools`. +#' Currently, only biallelic SNPs are supported. If haploid variants (e.g. sex +#' chromosomes) are included in the *VCF*, they are not transformed into homozygous +#' calls. Instead, reference alleles will be counted as 0 and alternative alleles +#' will be counted as 1. #' #' - *packedancestry* files: When loading *packedancestry* files, missing alleles will be converted from #' 'X' to NA @@ -19,9 +23,9 @@ #' - a string giving the path to a RDS file storing a `bigSNP` object from #' the `bigsnpr` package (usually created with [bigsnpr::snp_readBed()]) #' - a string giving the path to a vcf file. Note that we currently read the whole -#' vcf in memory with `vcfR`, so only smallish vcf can be imported. Only biallelic +#' vcf in memory with `vcfR`, so only smallish *VCF* can be imported. Only biallelic #' SNPs will be considered. -#' - a string giving the path to a packedancestry .geno file. The associated +#' - a string giving the path to a *packedancestry* .geno file. The associated #' .ind and .snp files are expected to be in the same directory and share the #' same file name prefix. #' - a genotype matrix of dosages (0, 1, 2, NA) giving the dosage of the alternate @@ -39,9 +43,9 @@ #' if `x` is a vcf or packedancestry file) #' @param ... if `x` is the name of a vcf file, additional arguments #' passed to [vcfR::read.vcfR()]. Otherwise, unused. -#' @param parser the name of the parser used for VCF, either "cpp" to use +#' @param parser the name of the parser used for *VCF*, either "cpp" to use #' a fast C++ parser, or "vcfR" to use the R package `vcfR`. The latter is slower -#' but more robust; if "cpp" gives error, try using "vcfR" in case your VCF has +#' but more robust; if "cpp" gives error, try using "vcfR" in case your *VCF* has #' an unusual structure. #' @param n_cores the number of cores to use for parallel processing #' @param valid_alleles a vector of valid allele values; it defaults to 'A','T', @@ -52,10 +56,10 @@ #' @param backingfile the path, including the file name without extension, #' for backing files used to store the data (they will be given a .bk #' and .RDS automatically). This is not needed if `x` is already an .RDS file. -#' If `x` is a .BED file and `backingfile` is left NULL, the backing file will +#' If `x` is a .BED or a *VCF* file and `backingfile` is left NULL, the backing file will #' be saved in the same directory as the #' bed file, using the same file name but with a different file type (.bk rather -#' than .bed). The same logic applies to .vcf files. If `x` is a genotype matrix and `backingfile` is NULL, then a +#' than .bed). If `x` is a genotype matrix and `backingfile` is NULL, then a #' temporary file will be created (but note that R will delete it at the end of #' the session!) #' @param quiet provide information on the files used to store the data @@ -135,9 +139,8 @@ gen_tibble.character <- stop("file_path should be pointing to a either a PLINK .bed or .ped file, a bigSNP .rds file or a VCF .vcf or .vcf.gz file") } - loci <- show_loci(x_gt) - new_loci <- add_chromosome_as_int(loci) - show_loci(x_gt) <- new_loci + # create a chr_int column + show_loci(x_gt)$chr_int <- cast_chromosome_to_int(show_loci(x_gt)$chromosome) file_in_use <- gt_save_light(x_gt, quiet = quiet) return(x_gt) @@ -311,9 +314,8 @@ gen_tibble.matrix <- function(x, indiv_meta, loci, ..., remove_on_fail = TRUE) show_loci(new_gen_tbl) <- harmonise_missing_values(show_loci(new_gen_tbl), missing_alleles = missing_alleles) - loci <- show_loci(new_gen_tbl) - new_loci <- add_chromosome_as_int(loci) - show_loci(new_gen_tbl) <- new_loci + # create a chr_int column + show_loci(new_gen_tbl)$chr_int <- cast_chromosome_to_int(show_loci(new_gen_tbl)$chromosome) files_in_use <- gt_save(new_gen_tbl, quiet = quiet) return(new_gen_tbl) @@ -570,39 +572,23 @@ change_duplicated_file_name <- function(file){ } # adding a chr_int column -add_chromosome_as_int <- function(loci){ - - - if(is.integer(loci$chromosome)){ - loci$chr_int <- loci$chromosome - - } else if(is.numeric(loci$chromosome)){ - non_na_id <- !is.na(loci$chromosome) - chr_int <- as.integer(loci$chromosome[non_na_id]) - - loci$chr_int <- rep(NA_integer_, length(loci$chromosome)) - loci$chr_int[non_na_id] <- chr_int - - } else if(is.character(loci$chromosome)){ - non_na_id <- !is.na(loci$chromosome) - chr_factor <- as.factor(loci$chromosome[non_na_id]) - chr_int <- as.integer(chr_factor) - - loci$chr_int <- rep(NA_integer_, length(loci$chromosome)) - loci$chr_int[non_na_id] <- chr_int - - - } else if(is.factor(loci$chromosome)){ - non_na_id <- !is.na(loci$chromosome) - chr_int <- as.integer(loci$chromosome[non_na_id]) - - loci$chr_int <- rep(NA_integer_, length(loci$chromosome)) - loci$chr_int[non_na_id] <- chr_int - +cast_chromosome_to_int <- function(chromosome){ + # if chromosome is an factor, then cast it to character + if (is.factor(chromosome)){ + chromosome <- as.character(chromosome) + } + # if chromosome is a character, then cast it to integer + if (is.character(chromosome)){ + chromosome <- tryCatch(as.integer(chromosome), warning = function(e) {as.integer(as.factor(chromosome))}) + } + if (is.numeric(chromosome)){ + chromosome <- as.integer(chromosome) + } + if (is.integer(chromosome)){ + return(chromosome) } else { - stop("Chromosome column should be integer, character, or factor") } - return(loci) + } diff --git a/R/gt_save.R b/R/gt_save.R index feec44ca..46127ca1 100644 --- a/R/gt_save.R +++ b/R/gt_save.R @@ -44,7 +44,7 @@ gt_save <- function(x, file_name = NULL, quiet = FALSE) { return(c(file_name,gt_get_file_names(x))) } -#' a light version of gt_save that does not resave the RDS, to be used internally +#' a light version of gt_save that does not resave the bigSNP RDS or backing file, to be used internally #' when creating a gen_tibble (if we have just created it, there is not need #' to resave it) #' @param x a [`gen_tibble`] diff --git a/R/loci_ld_clump.R b/R/loci_ld_clump.R index 2b10280a..d6bee928 100644 --- a/R/loci_ld_clump.R +++ b/R/loci_ld_clump.R @@ -80,10 +80,16 @@ loci_ld_clump.vctrs_bigSNP <- function(.x, # rows (individuals) that we want to use rows_to_keep <- vctrs::vec_data(.x) if (use_positions){ - .positions <- show_loci(.x)$position + #.positions <- show_loci(.x)$position + #.positions <- attr(.x,"bigsnp")$map$physical.pos + .positions <- rep(NA, nrow(attr(.x,"bigsnp")$map)) + .positions[show_loci(.x)$big_index] <- show_loci(.x)$position } else { .positions <- NULL } + # create a chromosome vector (fill gaps between bigsnpr and show_loci) + .chromosome <- rep(2147483647L, nrow(attr(.x,"bigsnp")$map)) + .chromosome[show_loci(.x)$big_index] <- show_loci(.x)$chr_int # now figure out if we have any snp which have already been removed # those will go into `exclude` loci_not_in_tibble <- seq_len(nrow(attr(.x,"bigsnp")$map))[!seq_len(nrow(attr(.x,"bigsnp")$map)) %in% @@ -95,7 +101,10 @@ loci_ld_clump.vctrs_bigSNP <- function(.x, # as long as we have more than one individual snp_clump_ids <- bigsnpr::snp_clumping(G = attr(.x,"bigsnp")$genotypes, - infos.chr = show_loci(.x)$chr_int, + #infos.chr = show_loci(.x)$chr_int, + # TEMP HACK using the info from the bigsnpr object + #infos.chr = cast_chromosome_to_int(attr(.x,"bigsnp")$map$chromosome), + infos.chr = .chromosome, ind.row = vctrs::vec_data(.x), S = S, thr.r2 = thr_r2, diff --git a/R/snp_king.R b/R/snp_king.R index 8df9603f..0e056025 100644 --- a/R/snp_king.R +++ b/R/snp_king.R @@ -2,9 +2,6 @@ #' #' This function computes the KING-robust estimator of kinship. #' -#' The last step is not optimised yet, as it does the division of the num by the -#' den all in memory (on my TODO list...). -#' #' @param X a [bigstatsr::FBM.code256] matrix (as found in the `genotypes` #' slot of a [bigsnpr::bigSNP] object). #' @param ind.row An optional vector of the row indices that are used. diff --git a/R/vcf_to_fbm_cpp.R b/R/vcf_to_fbm_cpp.R index 3a64ccc0..9288d41d 100644 --- a/R/vcf_to_fbm_cpp.R +++ b/R/vcf_to_fbm_cpp.R @@ -86,11 +86,6 @@ vcf_to_fbm_cpp <- function( # add the new columns file_backed_matrix$add_columns(chunk_info$num_loci) # fill them in - # file_backed_matrix[ - # , - # index_start:(index_start+chunk_info$num_loci-1) - # ] <- genotypes_matrix[,1:chunk_info$num_loci] - write_to_FBM(file_backed_matrix, allele_counts = genotypes_matrix, col_start = index_start-1, diff --git a/R/vcf_to_fbm_vcfR.R b/R/vcf_to_fbm_vcfR.R index b83ed3f8..73d38afb 100644 --- a/R/vcf_to_fbm_vcfR.R +++ b/R/vcf_to_fbm_vcfR.R @@ -153,7 +153,12 @@ poly_indiv_dosage <- function (x, max_ploidy){ # get dosages for a genotype x and return them as raw for inclusion in the filebacked matrix poly_genotype_dosage <- function (x, max_ploidy){ if (!is.na(x[1]) && x[1]!="."){ - as.raw(sum(as.numeric(x))) + dosage <- sum(as.numeric(x)) + if (dosage<(max_ploidy+1)){ + return(as.raw(dosage)) + } else{ + stop("a genotype has more than max_ploidy alleles. We estimate max_ploidy from the first variant in the vcf file, make sure that variant is representative of ploidy (e.g. it is not on a sex chromosome).") + } } else { return(as.raw(max_ploidy+1)) } diff --git a/data-raw/ideas/allele_sharing.R b/data-raw/ideas/allele_sharing.R deleted file mode 100644 index 9a145efa..00000000 --- a/data-raw/ideas/allele_sharing.R +++ /dev/null @@ -1,40 +0,0 @@ -library(hierfstat) -set.seed(123) -dos<-matrix(sample(0:2,size=10000,replace=TRUE),ncol=100) -pop=rep(1:5,each=20) -fs.dosage(dos,pop=pop) - -dos_match <- matching(dos) - -#### -test_genotypes <- rbind(c(1,1,0,1,1,0), - c(2,1,0,NA,0,0), - c(2,NA,0,0,1,1)) -test_indiv_meta <- data.frame (id=c("a","b","c"), - population = c("pop1","pop1","pop2")) -test_loci <- data.frame(name=paste0("rs",1:6), - chromosome=paste0("chr",c(1,1,1,1,2,2)), - position=as.integer(c(3,5,65,343,23,456)), - genetic_dist = as.double(rep(0,6)), - allele_ref = c("A","T","C","G","C","T"), - allele_alt = c("T","C", NA,"C","G","A")) - -test_gt <- gen_tibble(x = test_genotypes, loci = test_loci, indiv_meta = test_indiv_meta, quiet = TRUE) - - - -dos_hier_match <- hierfstat::matching(test_genotypes) - -test_fbm <- tidypopgen:::.gt_get_bigsnp(test_gt)$genotypes -test_as <- snp_allele_sharing(test_fbm) - - - -dos <- test_genotypes - -na <- matrix(rep(1,prod(dim(dos))),ncol=ncol(dos)) -ina<-which(is.na(dos)) -na[ina]<-0 -dos[ina]<-1 -Mij <- 1/2 * (1+1/tcrossprod(na) * tcrossprod(dos-1)) -# Mij is the allele sharing matrix diff --git a/data-raw/ideas/fst_gt_compare_to_hier.R b/data-raw/ideas/fst_gt_compare_to_hier.R deleted file mode 100644 index 73d4ce09..00000000 --- a/data-raw/ideas/fst_gt_compare_to_hier.R +++ /dev/null @@ -1,111 +0,0 @@ -test_genotypes <- rbind(c(1,1,0,1,1,0), - c(2,1,0,NA,0,0), - c(2,NA,0,0,1,1), - c(1,0,0,1,0,0), - c(1,2,0,1,2,1), - c(0,0,0,0,NA,1), - c(0,1,1,0,1,NA)) -test_indiv_meta <- data.frame (id=c("a","b","c","d","e","f","g"), - population = c("pop1","pop1","pop2","pop2","pop1","pop3","pop3")) -test_loci <- data.frame(name=paste0("rs",1:6), - chromosome=paste0("chr",c(1,1,1,1,2,2)), - position=as.integer(c(3,5,65,343,23,456)), - genetic_dist = as.double(rep(0,6)), - allele_ref = c("A","T","C","G","C","T"), - allele_alt = c("T","C", NA,"C","G","A")) - -test_gt <- gen_tibble(x = test_genotypes, loci = test_loci, indiv_meta = test_indiv_meta, quiet = TRUE) -test_gt <- test_gt %>% group_by(population) - -# a developer function to create various count summaries of a population, used to -# compute more complex statistics (e.g. pairwise fst, etc.). -# Specifically, we compute: -# sums_alt sum alleles for alt -# sums_ref sums alleles for ref -# n sums of all alleles -# het_obs observed heterozygosity -# het_exp expected heterozygosity -.gt_pop_freqs <- function(.x){ - counts <- bigstatsr::big_counts( .gt_get_bigsnp(.x)$genotypes, - ind.row =.gt_bigsnp_rows(.x), - ind.col = .gt_bigsnp_cols(.x)) - sums_alt <- apply(counts,2,function(x) x[2]+2*x[3]) - n <- apply(counts,2,function(x) sum(x[1:3])*2) - sums_ref <- n - sums_alt - freq_alt <- sums_alt/n - freq_ref <- 1- freq_alt -# het_count <- apply(counts,2,function(x) x[2]) # This should be simply a row from the counts matrix - het_obs <- apply(counts,2,function(x) x[2]/sum(x[1:3])) - #het_exp <- 2 * sums_alt/n * sums_ref/n - return (list(#sums_alt = sums_alt, - #sums_ref = sums_ref, - freq_alt = freq_alt, - freq_ref = freq_ref, - #het_count = het_count, - n = n, - het_obs = het_obs)) -} - - -pairwise_pop_fst_nei83 <- function(.x, by_locus = FALSE){ - # get the populations - .group_levels = .x %>% group_keys() - # create all combinations - pairwise_combn <- utils::combn(nrow(.group_levels),2) - # vector and matrix to store Fst for total and by locus - Fst_tot <- rep(NA_real_, ncol(pairwise_combn)) - if (by_locus){ - Fst_locus <- matrix(NA_real_, nrow = count_loci(.x), ncol = ncol(pairwise_combn)) - } - # summarise population frequencies - pop_freqs_df <- group_map(.x, .f=~.gt_pop_freqs(.x)) - for (i_col in seq_len(ncol(pairwise_combn))){ - pop1 <- pairwise_combn[1,i_col] - pop2 <- pairwise_combn[2,i_col] - - n <-cbind(pop_freqs_df[[pop1]]$n,pop_freqs_df[[pop2]]$n)/2 - sHo <-cbind(pop_freqs_df[[pop1]]$het_obs,pop_freqs_df[[pop2]]$het_obs) - mHo <- apply(sHo, 1, mean, na.rm = TRUE) - freq_alt <- cbind(pop_freqs_df[[pop1]]$freq_alt, pop_freqs_df[[pop2]]$freq_alt) - freq_ref <- cbind(pop_freqs_df[[pop1]]$freq_ref, pop_freqs_df[[pop2]]$freq_ref) - - # sum of squared frequencies - sp2 <- freq_alt^2+freq_ref^2 - Hs <- (1 - sp2 - sHo/2/n) - Hs <- n/(n - 1) * Hs - np <- apply(n, 1, fun <- function(x) sum(!is.na(x))) - # mean sample size over the populations - mn <- apply(n, 1, fun <- function(x) { - sum(!is.na(x))/sum(1/x[!is.na(x)]) - }) - # mean sum of square frequencies - msp2 <- apply(sp2, 1, mean, na.rm = TRUE) - mp2 <- rowMeans(freq_alt)^2+rowMeans(freq_ref)^2 - mHs <- mn/(mn - 1) * (1 - msp2 - mHo/2/mn) - Ht <- 1 - mp2 + mHs/mn/np - mHo/2/mn/np - - Dst <- Ht - mHs - if (by_locus){ - Fst_locus[,i_col] = Dst/Ht - } - Fst_tot[i_col]<-mean(Dst)/mean(Ht) - } - # format nicely the objects - group_combinations <- cbind(.group_levels[pairwise_combn[1,],],.group_levels[pairwise_combn[2,],]) - names(group_combinations) <- c(paste0(dplyr::group_vars(.x),"_1"),paste0(dplyr::group_vars(.x),"_2")) - Fst_tot <- data.frame(group_combinations,value=Fst_tot) - if (by_locus){ - rownames(Fst_locus)<-loci_names(.x) - colnames(Fst_locus)<- apply(group_combinations,1,function(x)paste(x,collapse = ".")) - } - if (by_locus){ - return(list(Fst_by_locus = Fst_locus, Fst_total = Fst_tot)) - } else{ - return(Fst_tot) - } -} - -pairwise_pop_fst_nei83(test_gt, by_locus = TRUE) - - - diff --git a/data-raw/ideas/fst_hier.R b/data-raw/ideas/fst_hier.R deleted file mode 100644 index 56ddf1b7..00000000 --- a/data-raw/ideas/fst_hier.R +++ /dev/null @@ -1,121 +0,0 @@ -## a full break down of the fst function, which includes Nei Fst - -test_genotypes <- rbind(c(1,1,0,1,1,0), - c(2,1,0,NA,0,0), - c(2,NA,0,0,1,1), - c(1,0,0,1,0,0), - c(1,2,0,1,2,1), - c(0,0,0,0,NA,1), - c(0,1,1,0,1,NA)) -test_indiv_meta <- data.frame (id=c("a","b","c","d","e","f","g"), - population = c("pop1","pop1","pop2","pop2","pop1","pop3","pop3")) -test_loci <- data.frame(name=paste0("rs",1:6), - chromosome=paste0("chr",c(1,1,1,1,2,2)), - position=as.integer(c(3,5,65,343,23,456)), - genetic_dist = as.double(rep(0,6)), - allele_ref = c("A","T","C","G","C","T"), - allele_alt = c("T","C", NA,"C","G","A")) - -test_gt <- gen_tibble(x = test_genotypes, loci = test_loci, indiv_meta = test_indiv_meta, quiet = TRUE) -test_gt <- test_gt %>% group_by(population) -test_sub_gt <- test_gt %>% filter(population%in%c("pop1","pop2")) - -# convert to hierfstat -test_hier <- gt_as_hierfstat(test_sub_gt) - -#hier_basic <- hierfstat::basic.stats(test_hier) -# note that Fstp, FIS and Dest are not simply averages - -#hier_fst_wc <- hierfstat::pairwise.WCfst(test_hier) -#hier_fst_nei <- hierfstat::pairwise.neifst(test_hier) - -######################################################## -data<-test_hier -diploid = TRUE -digits=10 -dum.pop<-FALSE -if (length(table(data[, 1])) < 2){ - data[dim(data)[1] + 1, 1] <- "DumPop" - dum.pop<-TRUE -} -if (dim(data)[2] == 2) - data <- data.frame(data, dummy.loc = data[, 2]) -loc.names <- names(data)[-1] -p <- hierfstat:::pop.freq(data, diploid) -n <- t(hierfstat:::ind.count(data)) -if (diploid) { - dum <- hierfstat::getal.b(data[, -1]) - Ho <- dum[, , 1] == dum[, , 2] - sHo <- (1 - t(apply(Ho, 2, fun <- function(x) tapply(x, - data[, 1], mean, na.rm = TRUE)))) - mHo <- apply(sHo, 1, mean, na.rm = TRUE) -} else { - sHo <- NA - mHo <- NA -} -sp2 <- lapply(p, fun <- function(x) apply(x, 2, fun2 <- function(x) sum(x^2))) # cols sums of squares -sp2 <- matrix(unlist(sp2), nrow = dim(data[, -1])[2], byrow = TRUE) -if (diploid) { - Hs <- (1 - sp2 - sHo/2/n) - Hs <- n/(n - 1) * Hs - Fis = 1 - sHo/Hs -} else { - Hs <- n/(n - 1) * (1 - sp2) - Fis <- NA -} -np <- apply(n, 1, fun <- function(x) sum(!is.na(x))) -mn <- apply(n, 1, fun <- function(x) { - np <- sum(!is.na(x)) - np/sum(1/x[!is.na(x)]) -}) -msp2 <- apply(sp2, 1, mean, na.rm = TRUE) -mp <- lapply(p, fun <- function(x) apply(x, 1, mean, na.rm = TRUE)) -mp2 <- unlist(lapply(mp, fun1 <- function(x) sum(x^2))) -if (diploid) { - mHs <- mn/(mn - 1) * (1 - msp2 - mHo/2/mn) - Ht <- 1 - mp2 + mHs/mn/np - mHo/2/mn/np - mFis = 1 - mHo/mHs -} else { - mHs <- mn/(mn - 1) * (1 - msp2) - Ht <- 1 - mp2 + mHs/mn/np - mFis <- NA -} -Dst <- Ht - mHs -Dstp <- np/(np - 1) * Dst -Htp = mHs + Dstp -Fst = Dst/Ht -Fstp = Dstp/Htp -Dest <- Dstp/(1 - mHs) -res <- data.frame(cbind(mHo, mHs, Ht, Dst, Htp, Dstp, Fst, - Fstp, mFis, Dest)) -names(res) <- c("Ho", "Hs", "Ht", "Dst", "Htp", "Dstp", - "Fst", "Fstp", "Fis", "Dest") -if (diploid) { - rownames(sHo) <- loc.names - rownames(Fis) <- loc.names -} -is.na(res) <- do.call(cbind, lapply(res, is.infinite)) -overall <- apply(res, 2, mean, na.rm = TRUE) -overall[7] <- overall[4]/overall[3] -overall[8] <- overall[6]/overall[5] -overall[9] <- 1 - overall[1]/overall[2] -overall[10] <- overall[6]/(1 - overall[2]) -names(overall) <- names(res) -if (!diploid) { - overall[c(1, 9)] <- NA -} -if(dum.pop){ - ToBeRemoved<-which(dimnames(Hs)[[2]]=="DumPop") - n<-n[,-ToBeRemoved,drop=FALSE] - Hs<-Hs[,-ToBeRemoved,drop=FALSE] - if (diploid) sHo<-sHo[,-ToBeRemoved,drop=FALSE] - Fis<-Fis[,-ToBeRemoved,drop=FALSE] - p<-lapply(p,function(x) x[,-ToBeRemoved,drop=FALSE]) -} -all.res <- list(n.ind.samp = n, pop.freq = lapply(p, round, - digits), Ho = round(sHo, digits), Hs = round(Hs, digits), - Fis = round(Fis, digits), perloc = round(res, digits), - overall = round(overall, digits)) -class(all.res) <- "basic.stats" -all.res - diff --git a/data-raw/ideas/fst_pairwise_wc_nei_something_is_wrong.R b/data-raw/ideas/fst_pairwise_wc_nei_something_is_wrong.R deleted file mode 100644 index 4fafde10..00000000 --- a/data-raw/ideas/fst_pairwise_wc_nei_something_is_wrong.R +++ /dev/null @@ -1,93 +0,0 @@ - -pairwise_pop_fst_wc <- function(.x, by_locus=FALSE){ - - message("this function is not properly tested yet!!!") - message("if you have time, test the results against something like hierfstat and create a unit test") - # get the populations - .group_levels = .x %>% group_keys() - # create all combinations - pairwise_combn <- utils::combn(nrow(.group_levels),2) - # vector and matrix to store Fst for total and by locus - Fst_tot <- rep(NA_real_, ncol(pairwise_combn)) - if (by_locus){ - Fst_locus <- matrix(NA_real_, nrow = count_loci(.x), ncol = ncol(pairwise_combn)) - } - # summarise population frequencies - pop_freqs_df <- group_map(.x, .f=~.gt_pop_freqs(.x)) - for (i_col in seq_len(ncol(pairwise_combn))){ - pop1 <- pairwise_combn[1,i_col] - pop2 <- pairwise_combn[2,i_col] - n1 <- pop_freqs_df[[pop1]]$n - n2 <- pop_freqs_df[[pop2]]$n - p1 <- pop_freqs_df[[pop1]]$freq_alt - p2 <- pop_freqs_df[[pop2]]$freq_alt - q1 <- pop_freqs_df[[pop1]]$freq_ref - q2 <- pop_freqs_df[[pop2]]$freq_ref - a <- (n1*n2)/(n1+n2) - b <- (1/(n1+n2-2))*((n1*p1*q1)+(n2*p2*q2)) - c <- (p1-p2)^2 - numerator <- 2*a*b - denominator <- a*c+(2*a-1)*b - if (by_locus){ - Fst_locus[,i_col] = 1-numerator/denominator - } - Fst_tot[i_col]<-1-mean(numerator)/mean(denominator) - } - # format nicely the objects - group_combinations <- cbind(.group_levels[pairwise_combn[1,],],.group_levels[pairwise_combn[2,],]) - names(group_combinations) <- c(paste0(dplyr::group_vars(.x),"_1"),paste0(dplyr::group_vars(.x),"_2")) - Fst_tot <- tibble::tibble(group_combinations,value=Fst_tot) - if (by_locus){ - rownames(Fst_locus)<-loci_names(.x) - colnames(Fst_locus)<- apply(group_combinations,1,function(x)paste(x,collapse = ".")) - } - if (by_locus){ - return(list(Fst_by_locus = Fst_locus, Fst = Fst_tot)) - } else{ - return(Fst_tot) - } -} - -pairwise_pop_fst_nei86 <- function(.x, by_locus=FALSE){ - - message("this function is not properly tested yet!!!") - message("if you have time, test the results against something like hierfstat and create a unit test") - # get the populations - .group_levels = .x %>% group_keys() - # create all combinations - pairwise_combn <- utils::combn(nrow(.group_levels),2) - # vector and matrix to store Fst for total and by locus - Fst_tot <- rep(NA_real_, ncol(pairwise_combn)) - if (by_locus){ - Fst_locus <- matrix(NA_real_, nrow = count_loci(.x), ncol = ncol(pairwise_combn)) - } - # summarise population frequencies - pop_freqs_df <- group_map(.x, .f=~.gt_pop_freqs(.x)) - for (i_col in seq_len(ncol(pairwise_combn))){ - pop1 <- pairwise_combn[1,i_col] - pop2 <- pairwise_combn[2,i_col] - p1 <- pop_freqs_df[[pop1]]$freq_alt - p2 <- pop_freqs_df[[pop2]]$freq_alt - pbar <- (p1+p2)/2 - numerator <- ((p1-p2)^2) - denominator <- (2*pbar*(1-pbar)) - if (by_locus){ - Fst_locus[,i_col] = numerator/denominator - } - Fst_tot[i_col]<-mean(numerator)/mean(denominator) - } - # format nicely the objects - group_combinations <- cbind(.group_levels[pairwise_combn[1,],],.group_levels[pairwise_combn[2,],]) - names(group_combinations) <- c(paste0(dplyr::group_vars(.x),"_1"),paste0(dplyr::group_vars(.x),"_2")) - Fst_tot <- tibble::tibble(group_combinations,value=Fst_tot) - if (by_locus){ - rownames(Fst_locus)<-loci_names(.x) - colnames(Fst_locus)<- apply(group_combinations,1,function(x)paste(x,collapse = ".")) - } - if (by_locus){ - return(list(Fst_by_locus = Fst_locus, Fst = Fst_tot)) - } else{ - return(Fst_tot) - } -} - diff --git a/data-raw/ideas/gt_roh.R b/data-raw/ideas/gt_roh.R deleted file mode 100644 index cd81bfd6..00000000 --- a/data-raw/ideas/gt_roh.R +++ /dev/null @@ -1,103 +0,0 @@ -#' Detect runs of homozygosity based on windows -#' -#' This function uses a sliding-window approach to look for runs of homozygosity (or -#' heterozygosity) in a diploid genome. This function uses the package `selectRUNS`, -#' which implements an approach equivalent to the one in PLINK. -#' -#' @param x a [gen_tibble] -#' @param window_size the size of sliding window (number of SNP loci) (default = 15) -#' @param threshold the threshold of overlapping windows of the same state -#' (homozygous/heterozygous) to call a SNP in a RUN (default = 0.05) -#' @param min_snp minimum n. of SNP in a RUN (default = 3) -#' @param heterozygosity should we look for runs of heterozygosity (instead of homozygosity? (default = FALSE) -#' @param max_opp_window max n. of SNPs of the opposite type (e.g. heterozygous -#' snps for runs of homozygosity) in the -#' sliding window (default = 1) -#' @param max_miss_window max. n. of missing SNP in the sliding window (default = 1) -#' @param max_gap max distance between consecutive SNP to be still considered a -#' potential run (default = 10^6 bps) -#' @param min_length_bps minimum length of run in bps (defaults to 1000 bps = 1 kbps) -#' @param min_density minimum n. of SNP per kbps (defaults to 0.1 = 1 SNP every 10 kbps) -#' @param max_opp_run max n. of opposite genotype SNPs in the run (optional) -#' @param max_miss_run max n. of missing SNPs in the run (optional) -#' -#' @details -#' This function returns a data frame with all runs detected in the dataset. -#' This data frame can then be written out to a csv file. -#' The data frame is, in turn, the input for other functions of the detectRUNS package -#' that create plots and produce statistics from the results -#' (see plots and statistics functions in this manual, -#' and/or refer to the detectRUNS vignette). -#' -#' If the [`gen_tibble`] is grouped, then the grouping variable is used to fill in the -#' group table. Otherwise, the group 'column' is filled with the same values as the 'id' -#' column -#' -#' @return A dataframe with RUNs of Homozygosity or Heterozygosity in the analysed dataset. -#' The returned dataframe contains the following seven columns: "group", "id", "chrom", -#' "nSNP", "from", "to", "lengthBps" (group: population, breed, case/control etc.; -#' id: individual identifier; chrom: chromosome on which the run is located; -#' nSNP: number of SNPs in the run; from: starting position of the run, in bps; -#' to: end position of the run, in bps; lengthBps: size of the run) -#' @export -#' -#' @examples -#' # don't run the example -#' if (FALSE) { -#' sheep_bed <- systems.file("extdata/sheep.bed", package="tidypopgen") -#' sheep_gt <- tidypopgen::gen_tibble(bed_path, backingfile = tempfile(), quiet=TRUE) -#' sheep_roh <- gt_roh(sheep_gt) -#' } - - -gt_roh <- function(x, window_size = 15, threshold = 0.05, - min_snp = 3, ROHet = FALSE, max_opp_window = 1, max_miss_window = 1, - max_gap = 10^6, min_length_bps = 1000, min_density = 1/1000, - max_opp_run = NULL, max_miss_run = NULL) { - if (!requireNamespace("detectRUNS", quietly = TRUE)) { - stop( - "to use this function, first install package 'detectRUNS' with\n", - "install.packages('detectRUNS')") - } - # collect all parameters in a variable - parameters <- list(windowSize=window_size, threshold=threshold, minSNP=min_snp, - ROHet=ROHet, maxOppWindow=max_opp_window, - maxMissWindow=max_miss_window, maxGap=max_gap, minLengthBps=min_length_bps, - minDensity=min_density, maxOppRun=max_opp_run, maxMissRun=max_miss_run) - - # create a map object - map <- show_loci(x) %>% dplyr::select(dplyr::all_of(c("chromosome","name","position"))) %>% - dplyr::rename("Chrom"="chromosome", "SNP"="name", "bps"="position") %>% as.data.frame() - - # compute the gaps between snps - gaps <- diff(map$bps) - # use groups (if defined) - if (dplyr::is_grouped_df(sheep_gt)){ - groups <- x %>% dplyr::group_keys() - } else { - groups <- x$id - } - - # initialize data.frame of results - runs_df <- data.frame(group=character(), id=character(), chrom=character(), nSNP=integer(), - from=integer(), to=integer(), lengthBps=integer()) - # naively process it by row (the parallelism is implemented within individual) - # access time is horrible, but I don't think this is the bottleneck - # it needs some profiling - X <- .gt_get_bigsnp(x)$genotypes # pointer for the FBM - for (i in seq_len(nrow(x))){ - this_genotype <- X[i,] - this_indiv <- list(FID=groups[i], IID=x$id[i]) - # find runs for this individual - this_runs <- utils::getFromNamespace("slidingRuns", "detectRUNS")(this_genotype, this_indiv, map, gaps, parameters) - # bind this run (if has rows) to others RUNs (if any) - runs_df <- rbind(runs_df, this_runs) - } - - # fix row names - row.names(runs_df) <- NULL - - # return calculated runs (data.frame) - return(runs_df) - -} diff --git a/data-raw/ideas/hierfstat_summary_stats.R b/data-raw/ideas/hierfstat_summary_stats.R deleted file mode 100644 index 7b96187f..00000000 --- a/data-raw/ideas/hierfstat_summary_stats.R +++ /dev/null @@ -1,13 +0,0 @@ -# hierfstat notes -fis.dosage(dos_hier_match,matching=TRUE, pop=test_indiv_meta$population) - -fst.dosage(dos_hier_match,matching=TRUE, pop=test_indiv_meta$population) - -# these return a vector of n populations plus a global value -# write a function that returns the n vector, and add a parameter that allows the inclusion -# of the global value - - -## For Hudson Fst, we could check against: -# https://www.rdocumentation.org/packages/KRIS/versions/1.1.6/topics/fst.hudson -# also have a look at fst4pg diff --git a/data-raw/ideas/pop_within_stats.R b/data-raw/ideas/pop_within_stats.R deleted file mode 100644 index a753f39f..00000000 --- a/data-raw/ideas/pop_within_stats.R +++ /dev/null @@ -1,41 +0,0 @@ -.x <- pinus_gt -.x <- .x[1:5,] %>% select_loci(1:10) -# we compute quantities by locus (the can then be combined for individuals later) -# counts of genotypes -.counts <- bigstatsr::big_counts(.gt_get_bigsnp(.x)$genotypes, - ind.row = .gt_bigsnp_rows(.x), - ind.col = .gt_bigsnp_cols(.x)) -# number of alleles -.n_k <- rbind(.counts[1,]*2+.counts[2,], - .counts[3,]*2+.counts[2,]) -# remove invariant sites -to_remove <- (.n_k[1,]==0 | .n_k[2,]==0) -.counts <- .counts[,!to_remove] -.n_k <- .n_k[,!to_remove] - -# total sample size -.N <- apply(.counts[1:3,],2,sum) -# frequencies of alleles -.p <- .n_k[1,]/(.N*2) -.q <- 1- .p -# observed heterozygosity -h_o <- .counts[2,]/.N -# unbiased within pop gene diversity (h_s) -h_s <- (1-(.p^2+.q^2))*(2*.N/(2*.N-1)) - -Fs <- (h_s - h_o)/h_s -# if it is a grouped tibble with multiple populations - -# overall gene diversity - - - -########################################## -# convenient functs -.gt_bigsnp_cols <- function(.x){ - show_loci(.x)$big_index -} - -.gt_bigsnp_rows <- function(.x){ - vctrs::vec_data(.x$genotypes) -} diff --git a/data-raw/ideas/roh_ideas.R b/data-raw/ideas/roh_ideas.R deleted file mode 100644 index b5056a9f..00000000 --- a/data-raw/ideas/roh_ideas.R +++ /dev/null @@ -1,128 +0,0 @@ -slidingRUNS.run <- function(x, windowSize = 15, threshold = 0.05, - minSNP = 3, ROHet = FALSE, maxOppWindow = 1, maxMissWindow = 1, - maxGap = 10^6, minLengthBps = 1000, minDensity = 1/1000, - maxOppRun = NULL, maxMissRun = NULL) { - - # TODO check that snps are in order (we do that for LD, I think) - - - # collect all parameters in a variable - parameters <- list(windowSize=windowSize, threshold=threshold, minSNP=minSNP, - ROHet=ROHet, maxOppWindow=maxOppWindow, - maxMissWindow=maxMissWindow, maxGap=maxGap, minLengthBps=minLengthBps, - minDensity=minDensity, maxOppRun=maxOppRun, maxMissRun=maxMissRun) - - # calculate gaps - # TODO - gaps <- diff(mapFile$bps) - - # initialize data.frame of results - RUNs <- data.frame(group=character(), id=character(), chrom=character(), nSNP=integer(), - from=integer(), to=integer(), lengthBps=integer()) - - chromosomes <- unique(show_loci(x)$chromosome) - - window_runs_chromosome <- function (X, ind, indiv_name, indiv_group = NULL,parameters){ - - } - - # pointer to the FBM - X <- .gt_get_bigsnp(x)$genotypes - - for (i_chromosome in chromosomes){ - # get loci for this chromosome - rows_this_chrom <- show_loci(x)$big_snp_locus - - - - - } - - # read file line by line (http://stackoverflow.com/questions/4106764/what-is-a-good-way-to-read-line-by-line-in-r) - while (length(oneLine <- readLines(conn, n = 1, warn = FALSE)) > 0) { - - # get individual - individual <- list(FID=genotype[1], IID=genotype[2]) - - # find runs for this individual - a_run <- detectRUNS:::slidingRuns(genotype, animal, mapFile, gaps, parameters) - - # bind this run (if has rows) to others RUNs (if any) - RUNs <- rbind(RUNs, a_run) - - } - - # close input stream - close(conn) - - # fix row names - row.names(RUNs) <- NULL - - # return calculated runs (data.frame) - return(RUNs) -} - - -#' Function to detect runs using sliding window approach -#' -#' This is a core function not intended to be exported -#' -#' @param indGeno vector of 0/1/NAs of individual genotypes (0: homozygote; 1: heterozygote) -#' @param individual list of group (breed, population, case/control etc.) and ID of individual sample -#' @param mapFile Plink map file (for SNP position) -#' @param gaps distance between SNPs -#' @param parameters list of parameters -#' @param cpp use cpp functions or not (DEBUG) -#' -#' @details -#' This method uses sliding windows to detect RUNs. Checks on minimum n. of SNP, max n. of opposite and missing genotypes, -#' max gap between adjacent loci and minimum length of the run are implemented (as in the sliding window method). -#' Both runs of homozygosity (RoHom) and of heterozygosity (RoHet) can be search for (option ROHet: TRUE/FALSE) -#' NOTE: this methods is intended to not be exported -#' -#' @return A data frame of runs per individual sample -#' @keywords internal -#' - -slidingRuns <- function(indGeno, individual, mapFile, gaps, parameters, cpp=TRUE) { - # get individual and group - ind <- as.character(individual$IID) - group <- as.character(individual$FID) - - # use sliding windows (check cpp) - if (cpp == TRUE) { - res <- slidingWindowCpp(indGeno, gaps, parameters$windowSize, step=1, - parameters$maxGap, parameters$ROHet, parameters$maxOppWindow, - parameters$maxMissWindow); - - snpRun <- snpInRunCpp(res$windowStatus, parameters$windowSize, parameters$threshold) - } else { - res <- slidingWindow(indGeno, gaps, parameters$windowSize, step=1, - parameters$maxGap, parameters$ROHet, parameters$maxOppWindow, - parameters$maxMissWindow); - - snpRun <- snpInRun(res$windowStatus, parameters$windowSize, parameters$threshold) - } - - - # TODO: check arguments names - dRUN <- createRUNdf(snpRun, mapFile, parameters$minSNP, parameters$minLengthBps, - parameters$minDensity, res$oppositeAndMissingGenotypes, - parameters$maxOppRun, parameters$maxMissRun) - - # manipulate dRUN to order columns - dRUN$id <- rep(ind, nrow(dRUN)) - dRUN$group <- rep(group, nrow(dRUN)) - dRUN <- dRUN[,c(7,6,4,3,1,2,5)] - - # debug - if(nrow(dRUN) > 0) { - message(paste("N. of RUNS for individual", ind, "is:", nrow(dRUN))) - } else { - message(paste("No RUNs found for animal", ind)) - } - - #return RUNs to caller - return(dRUN) -} - diff --git a/inst/extdata/haploid_first_pop_a.vcf b/inst/extdata/haploid_first_pop_a.vcf new file mode 100644 index 00000000..47a1bfdd --- /dev/null +++ b/inst/extdata/haploid_first_pop_a.vcf @@ -0,0 +1,26 @@ +##fileformat=VCFv4.2 +##fileDate=20240510 +##source=PLINKv1.90 +##contig= +##contig= +##contig= +##contig= +##INFO= +##FORMAT= +#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT popa_GRC14300079 popa_GRC14300142 popa_GRC14300159 popa_GRC14300286 popa_GRC14300305 +23 51433071 rs5945676 T . . . PR GT 1 0 0 0 0 +1 82154 rs4477212 A . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 752566 rs3094315 A G . . PR GT 0/0 0/0 0/1 0/0 0/0 +1 752721 rs3131972 G A . . PR GT 0/0 0/0 0/1 0/0 0/1 +1 776546 rs12124819 A . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 798959 rs11240777 G A . . PR GT 0/0 0/0 1/1 0/0 0/1 +1 873558 rs1110052 G T . . PR GT 0/1 0/0 0/1 0/0 1/1 +1 934345 rs9697457 G . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 957640 rs6657048 C . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 994391 rs2488991 T . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 1264539 rs307354 C G . . PR GT 0/0 0/1 0/0 0/1 0/0 +1 1346905 rs1240719 T A . . PR GT 0/0 0/1 0/0 0/0 0/0 +2 61974443 rs2862633 G . . . PR GT 0/0 0/0 0/0 0/0 0/0 +2 139008811 rs28569024 T . . . PR GT 0/0 0/0 0/0 0/0 0/0 +2 235832763 rs10106770 G A . . PR GT 0/1 0/0 0/1 0/1 0/1 +3 155913651 rs11942835 T C . . PR GT 0/0 0/1 0/0 0/1 0/0 diff --git a/inst/extdata/haploid_middle_pop_a.vcf b/inst/extdata/haploid_middle_pop_a.vcf new file mode 100644 index 00000000..58ed3154 --- /dev/null +++ b/inst/extdata/haploid_middle_pop_a.vcf @@ -0,0 +1,26 @@ +##fileformat=VCFv4.2 +##fileDate=20240510 +##source=PLINKv1.90 +##contig= +##contig= +##contig= +##contig= +##INFO= +##FORMAT= +#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT popa_GRC14300079 popa_GRC14300142 popa_GRC14300159 popa_GRC14300286 popa_GRC14300305 +1 82154 rs4477212 A . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 752566 rs3094315 A G . . PR GT 0/0 0/0 0/1 0/0 0/0 +1 752721 rs3131972 G A . . PR GT 0/0 0/0 0/1 0/0 0/1 +1 776546 rs12124819 A . . . PR GT 0/0 0/0 0/0 0/0 0/0 +23 51433071 rs5945676 T C . . PR GT 1 0 0 0 0 +1 798959 rs11240777 G A . . PR GT 0/0 0/0 1/1 0/0 0/1 +1 873558 rs1110052 G T . . PR GT 0/1 0/0 0/1 0/0 1/1 +1 934345 rs9697457 G . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 957640 rs6657048 C . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 994391 rs2488991 T . . . PR GT 0/0 0/0 0/0 0/0 0/0 +1 1264539 rs307354 C G . . PR GT 0/0 0/1 0/0 0/1 0/0 +1 1346905 rs1240719 T A . . PR GT 0/0 0/1 0/0 0/0 0/0 +2 61974443 rs2862633 G . . . PR GT 0/0 0/0 0/0 0/0 0/0 +2 139008811 rs28569024 T . . . PR GT 0/0 0/0 0/0 0/0 0/0 +2 235832763 rs10106770 G A . . PR GT 0/1 0/0 0/1 0/1 0/1 +3 155913651 rs11942835 T C . . PR GT 0/0 0/1 0/0 0/1 0/0 diff --git a/man/gen_tibble.Rd b/man/gen_tibble.Rd index 29c7d928..9ec93fac 100644 --- a/man/gen_tibble.Rd +++ b/man/gen_tibble.Rd @@ -48,9 +48,9 @@ directory and have the same file name. \item a string giving the path to a RDS file storing a \code{bigSNP} object from the \code{bigsnpr} package (usually created with \code{\link[bigsnpr:snp_readBed]{bigsnpr::snp_readBed()}}) \item a string giving the path to a vcf file. Note that we currently read the whole -vcf in memory with \code{vcfR}, so only smallish vcf can be imported. Only biallelic +vcf in memory with \code{vcfR}, so only smallish \emph{VCF} can be imported. Only biallelic SNPs will be considered. -\item a string giving the path to a packedancestry .geno file. The associated +\item a string giving the path to a \emph{packedancestry} .geno file. The associated .ind and .snp files are expected to be in the same directory and share the same file name prefix. \item a genotype matrix of dosages (0, 1, 2, NA) giving the dosage of the alternate @@ -70,18 +70,18 @@ locus with only one allele). It defaults to '0' and '.' (the same as PLINK 1.9). \item{backingfile}{the path, including the file name without extension, for backing files used to store the data (they will be given a .bk and .RDS automatically). This is not needed if \code{x} is already an .RDS file. -If \code{x} is a .BED file and \code{backingfile} is left NULL, the backing file will +If \code{x} is a .BED or a \emph{VCF} file and \code{backingfile} is left NULL, the backing file will be saved in the same directory as the bed file, using the same file name but with a different file type (.bk rather -than .bed). The same logic applies to .vcf files. If \code{x} is a genotype matrix and \code{backingfile} is NULL, then a +than .bed). If \code{x} is a genotype matrix and \code{backingfile} is NULL, then a temporary file will be created (but note that R will delete it at the end of the session!)} \item{quiet}{provide information on the files used to store the data} -\item{parser}{the name of the parser used for VCF, either "cpp" to use +\item{parser}{the name of the parser used for \emph{VCF}, either "cpp" to use a fast C++ parser, or "vcfR" to use the R package \code{vcfR}. The latter is slower -but more robust; if "cpp" gives error, try using "vcfR" in case your VCF has +but more robust; if "cpp" gives error, try using "vcfR" in case your \emph{VCF} has an unusual structure.} \item{n_cores}{the number of cores to use for parallel processing} @@ -114,11 +114,15 @@ here the format } \details{ \itemize{ -\item \emph{VCF} files: the fast \code{cpp} parser is used by default. It attempts to establish -ploidy from the first variant; if that variant is found in a sex chromosome (or mtDNA), -it will fail. To use the fast parser, change the order of variants so that the first chromosome is an -autosome using a tool such as \code{vcftools}. Alternatively, the slower but more robust -\code{vcfR} parser should be used instead. +\item \emph{VCF} files: the fast \code{cpp} parser is used by default. Both \code{cpp} and \code{vcfR} parsers +attempt to establish ploidy from the first variant; if that variant is found in a +sex chromosome (or mtDNA), the parser will fail with 'Error: a genotype has more +than max_ploidy alleles...'. To successful import such a \emph{VCF}, change the order of variants +so that the first chromosome is an autosome using a tool such as \code{vcftools}. +Currently, only biallelic SNPs are supported. If haploid variants (e.g. sex +chromosomes) are included in the \emph{VCF}, they are not transformed into homozygous +calls. Instead, reference alleles will be counted as 0 and alternative alleles +will be counted as 1. \item \emph{packedancestry} files: When loading \emph{packedancestry} files, missing alleles will be converted from 'X' to NA } diff --git a/man/gt_save_light.Rd b/man/gt_save_light.Rd index 82707ad1..187a24eb 100644 --- a/man/gt_save_light.Rd +++ b/man/gt_save_light.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/gt_save.R \name{gt_save_light} \alias{gt_save_light} -\title{a light version of gt_save that does not resave the RDS, to be used internally +\title{a light version of gt_save that does not resave the bigSNP RDS or backing file, to be used internally when creating a gen_tibble (if we have just created it, there is not need to resave it)} \usage{ @@ -21,7 +21,7 @@ the file name and path of the \emph{.gt} file, together with the \emph{.rds} and \emph{.bk} files } \description{ -a light version of gt_save that does not resave the RDS, to be used internally +a light version of gt_save that does not resave the bigSNP RDS or backing file, to be used internally when creating a gen_tibble (if we have just created it, there is not need to resave it) } diff --git a/man/snp_king.Rd b/man/snp_king.Rd index bdb69bb0..7b6aae62 100644 --- a/man/snp_king.Rd +++ b/man/snp_king.Rd @@ -26,7 +26,3 @@ specified, all columns are used. Don't use negative indices.} \description{ This function computes the KING-robust estimator of kinship. } -\details{ -The last step is not optimised yet, as it does the division of the num by the -den all in memory (on my TODO list...). -} diff --git a/src/gt_grouped_summaries.cpp b/src/gt_grouped_summaries.cpp index 414b3a6a..f65751ca 100644 --- a/src/gt_grouped_summaries.cpp +++ b/src/gt_grouped_summaries.cpp @@ -39,7 +39,7 @@ ListOf gt_grouped_summaries(Environment BM, } } // now for each group, divide freq by valid_alleles - for (size_t group_i = 0; group_i < ngroups; group_i++) { + for (int group_i = 0; group_i < ngroups; group_i++) { freq(j, group_i) = freq(j, group_i) / valid_alleles(j, group_i); ref_freq(j, group_i) = 1-freq(j, group_i); heterozygotes(j, group_i) = heterozygotes(j, group_i) / valid_alleles(j, group_i); diff --git a/src/vcf_parser.cpp b/src/vcf_parser.cpp index 104514e0..beeaf70c 100644 --- a/src/vcf_parser.cpp +++ b/src/vcf_parser.cpp @@ -24,15 +24,35 @@ std::vector split(const std::string &s, const std::string &delimite // Function to count the number of alternate alleles from genotype information // missingValue is max_ploidy +1 -int countAlternateAlleles(const std::string &genotype, const int missingValue, const int ploidy) { +int countAlternateAlleles(const std::string &genotype, const size_t missingValue) { + // Rcout< ((missingValue-1)*2)){ + Rcpp::stop("a genotype has more than max_ploidy alleles. We estimate max_ploidy from the first variant in the vcf file, make sure that variant is representative of ploidy (e.g. it is not on a sex chromosome)."); + } + + // + if (pos_i< genotype.size()){ // don't read from string if we got beyond the limit + if (genotype[pos_i] == ':'){ + break; + } + } + } return count; } @@ -87,6 +107,7 @@ List extractAltAlleleCountsFromVCF(std::string filename, allele2.reserve(maxLoci); std::string line; + std::string this_chromosome = ""; // chromosome of the current line int lociCount = 0; // number of biallelic loci int lineCount = 0; // number of valid lines int skippedLoci = 0; @@ -130,7 +151,7 @@ List extractAltAlleleCountsFromVCF(std::string filename, // Collect alternate allele counts for all individuals if (fields[4][0] != '.'){ for (unsigned int i = 9; i < fields.size(); ++i) { - int count = countAlternateAlleles(fields[i], missingValue, ploidy[i-9]); + int count = countAlternateAlleles(fields[i], missingValue); allele_counts(i - 9, lociCount) = count; } } else { // if this is an invariant site diff --git a/src/write_to_FBM.cpp b/src/write_to_FBM.cpp index 2ef6e30c..118bbe1f 100644 --- a/src/write_to_FBM.cpp +++ b/src/write_to_FBM.cpp @@ -20,7 +20,7 @@ void write_to_FBM (Environment BM, #pragma omp parallel for num_threads(ncores) for (int locus_i = 0; locus_i < n_loci; locus_i++){ - for (int indiv_i = 0; indiv_i < n_indiv; indiv_i++) + for (size_t indiv_i = 0; indiv_i < n_indiv; indiv_i++) macc_fbm(indiv_i,col_start+locus_i) = allele_counts(indiv_i, locus_i); } diff --git a/tests/testthat/test_gen_tibble.R b/tests/testthat/test_gen_tibble.R index 9a28d35b..94da77c6 100644 --- a/tests/testthat/test_gen_tibble.R +++ b/tests/testthat/test_gen_tibble.R @@ -1,3 +1,4 @@ + # create file test_indiv_meta <- data.frame (id=c("a","b","c"), population = c("pop1","pop1","pop2")) @@ -159,6 +160,72 @@ test_that("gen_tibble identifies wrong loci table columns",{ }) +test_that("PROBLEM TEST gentibble from VCF with missingness issue",{ + ######################## + # PLINK BED files + ######################## + bed_path <- system.file("extdata/pop_b.bed", package = "tidypopgen") + pop_b_gt <- gen_tibble(bed_path, quiet=TRUE, backingfile = tempfile()) + + ######################## + # PLINK VCF files + ######################## + vcf_path <- system.file("extdata/pop_b.vcf", package = "tidypopgen") + pop_b_vcf_gt <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), + parser="vcfR") + expect_true(all.equal(show_genotypes(pop_b_gt),show_genotypes(pop_b_vcf_gt))) + # reload it in chunks + pop_b_vcf_gt2 <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), + chunk_size = 2, parser = "vcfR") + expect_true(all.equal(show_genotypes(pop_b_vcf_gt2),show_genotypes(pop_b_vcf_gt))) + expect_true(all.equal(show_loci(pop_b_vcf_gt2),show_loci(pop_b_vcf_gt))) + expect_true(is.integer(show_loci(pop_b_vcf_gt2)$chr_int)) + + # check our cpp parser + pop_b_vcf_fast_gt <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), parser="cpp") + + # debug + # if (!identical(show_genotypes(pop_b_gt),show_genotypes(pop_b_vcf_fast_gt))) { + # stop("genotypes are not equal \n", + # print(show_genotypes(pop_b_gt)),"\n", + # print(show_genotypes(pop_b_vcf_fast_gt))) + # } + # + # for(i in 1:10){ + # + # genotypes_info <- paste0( + # "Iteration: ", i, "\n", + # "Pop B GT: ", show_genotypes(pop_b_gt), "\n", + # "Pop B VCF Fast GT: ", show_genotypes(pop_b_vcf_fast_gt) + # ) + # expect_true(all.equal(show_genotypes(pop_b_gt),show_genotypes(pop_b_vcf_fast_gt)),info = genotypes_info) + # } + # check loci table against the vcfR parser + expect_true(all.equal(show_loci(pop_b_vcf_gt), show_loci(pop_b_vcf_fast_gt))) + # reload it in chunks + pop_b_vcf_fast_gt2 <- gen_tibble(vcf_path, quiet=TRUE, backingfile = tempfile(), + chunk_size = 2, parser="cpp") + + # # debug + # print(show_genotypes(pop_b_vcf_fast_gt2)) + # print(show_genotypes(pop_b_vcf_fast_gt)) + # + # for(i in 1:10){ + # + # genotypes_info <- paste0( + # "Iteration: ", i, "\n", + # "Pop B GT: ", show_genotypes(pop_b_vcf_fast_gt), "\n", + # "Pop B VCF Fast GT: ", show_genotypes(pop_b_vcf_fast_gt2) + # ) + # + # expect_true(all.equal(show_genotypes(pop_b_vcf_fast_gt2),show_genotypes(pop_b_vcf_fast_gt)), info = genotypes_info) + # } + + expect_true(all.equal(show_loci(pop_b_vcf_fast_gt2), show_loci(pop_b_vcf_fast_gt))) + expect_true(is.integer(show_loci(pop_b_vcf_fast_gt2)$chr_int)) + +}) + test_that("gen_tibble from files",{ ######################## # PLINK BED files @@ -244,18 +311,6 @@ test_that("gen_tibble from files with missingness",{ expect_true(all.equal(show_genotypes(pop_b_vcf_gt2),show_genotypes(pop_b_vcf_gt))) expect_true(all.equal(show_loci(pop_b_vcf_gt2),show_loci(pop_b_vcf_gt))) expect_true(is.integer(show_loci(pop_b_vcf_gt2)$chr_int)) - - # check our cpp parser - pop_b_vcf_fast_gt <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), parser="cpp") - expect_true(all.equal(show_genotypes(pop_b_gt),show_genotypes(pop_b_vcf_fast_gt))) - # check loci table against the vcfR parser - expect_true(all.equal(show_loci(pop_b_vcf_gt), show_loci(pop_b_vcf_fast_gt))) - # reload it in chunks - pop_b_vcf_fast_gt2 <- gen_tibble(vcf_path, quiet=TRUE, backingfile = tempfile(), - chunk_size = 2, parser="cpp") - expect_true(all.equal(show_genotypes(pop_b_vcf_fast_gt2),show_genotypes(pop_b_vcf_fast_gt))) - expect_true(all.equal(show_loci(pop_b_vcf_gt), show_loci(pop_b_vcf_fast_gt))) - expect_true(is.integer(show_loci(pop_b_vcf_fast_gt)$chr_int)) }) test_that("gentibble with packedancestry",{ @@ -576,11 +631,72 @@ test_that("additional vcf tests with larger file",{ } ) + +test_that("vcf's with haploid markers",{ +# read vcf with haploid markers first + vcf_path_haploid <- system.file("extdata/haploid_first_pop_a.vcf", package = "tidypopgen") + # the cpp parser catches the problem + expect_error(pop_a_vcf_gt_hap_cpp <- gen_tibble(vcf_path_haploid, quiet=TRUE,backingfile = tempfile(), parser="cpp"), + "a genotype") + # vcfR catches the problem + expect_error(pop_a_vcf_gt_hap_vcfR <- gen_tibble(vcf_path_haploid, quiet=TRUE,backingfile = tempfile(), parser="vcfR"), + "a genotype") + # read vcf with haploid in the middle + vcf_path_haploid_middle <- system.file("extdata/haploid_middle_pop_a.vcf", package = "tidypopgen") + pop_a_vcf_gt_hapmid_cpp <- gen_tibble(vcf_path_haploid_middle, quiet=TRUE,backingfile = tempfile(), parser="cpp") + pop_a_vcf_gt_hapmid_vcfR <- gen_tibble(vcf_path_haploid_middle, quiet=TRUE,backingfile = tempfile(), parser="vcfR") + + # vcfr reads correctly + expect_equal(show_genotypes(pop_a_vcf_gt_hapmid_vcfR)[,show_loci(pop_a_vcf_gt_hapmid_vcfR)$chromosome == 23], c(1,0,0,0,0)) + # cpp reads correctly + expect_equal(show_genotypes(pop_a_vcf_gt_hapmid_cpp)[,show_loci(pop_a_vcf_gt_hapmid_cpp)$chromosome == 23], c(1,0,0,0,0)) + +}) + +test_that("chr_int is correct",{ + # unit tests for the casting function + chromosome_names <- c("1", "2", NA, "4") + expect_true(identical(c(1L,2L,NA,4L), cast_chromosome_to_int(chromosome_names))) + chromosome_names <- c("chr1", "chr2", NA, "chr4") + expect_true(identical(c(1L,2L,NA,3L), cast_chromosome_to_int(chromosome_names))) + chromosome_names <- c("a", "b", NA, "c") + expect_true(identical(c(1L,2L,NA,3L), cast_chromosome_to_int(chromosome_names))) + + # a real life example + + # read bed + bed_path <- system.file("extdata/pop_b.bed", package = "tidypopgen") + pop_b_gt <- gen_tibble(bed_path, quiet=TRUE, backingfile = tempfile()) + + # chr_int is correct for bed files + expect_equal(show_loci(pop_b_gt)$chr_int, show_loci(pop_b_gt)$chromosome) + + # read ped + ped_path <- system.file("extdata/pop_b.ped", package = "tidypopgen") + pop_b_ped_gt <- gen_tibble(ped_path, quiet=TRUE, backingfile = tempfile()) + + # chr_int is correct for ped files + expect_equal(show_loci(pop_b_ped_gt)$chr_int, show_loci(pop_b_ped_gt)$chromosome) + + # read vcf + vcf_path <- system.file("extdata/pop_a.vcf", package = "tidypopgen") + pop_a_vcfr_gt <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), parser = "vcfR") + pop_a_cpp_gt <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), parser = "cpp") + + # chr_int is correct for vcf + expect_equal(show_loci(pop_a_vcfr_gt)$chr_int, as.integer(show_loci(pop_a_vcfr_gt)$chromosome)) + expect_equal(show_loci(pop_a_cpp_gt)$chr_int, as.integer(show_loci(pop_a_cpp_gt)$chromosome)) + +}) + + test_that("gen_tibble family.ID from vcf",{ + # If the gen_tibble has been read in from vcf format, family.ID in the resulting # plink files will be the same as sample.ID. + #### With vcfr parser vcf_path <- system.file("extdata/pop_b.vcf", package = "tidypopgen") pop_b_vcf_gt <- gen_tibble(vcf_path, quiet=TRUE,backingfile = tempfile(), diff --git a/tests/testthat/test_loci_ld_clump.R b/tests/testthat/test_loci_ld_clump.R index a62e636d..aa48fceb 100644 --- a/tests/testthat/test_loci_ld_clump.R +++ b/tests/testthat/test_loci_ld_clump.R @@ -92,30 +92,31 @@ test_that("loci order",{ test_indiv_meta <- data.frame (id=c("a","b","c"), population = c("pop1","pop1","pop2")) - test_genotypes <- rbind(c(2,2,0,1,1,2), - c(2,2,0,0,0,1), - c(2,2,0,0,1,1)) + test_genotypes <- rbind(c(1,2,2,0,1,2), + c(0,2,2,0,0,1), + c(1,2,2,0,0,1)) - test_loci <- data.frame(name=paste0("rs",1:6), - chromosome=c("chr2","chr1","chr1","chr1","chr2","chr1"), - position=c(3,5,65,343,23,456), + test_loci <- data.frame(name=paste0("rs",c(5,rep(1:4,1),6)), + chromosome=c("chr2","chr1","chr1","chr1","chr1","chr2"), + position=c(23,3,5,65,343,456), genetic_dist = as.double(rep(0,6)), - allele_ref = c("A","T","C","G","C","T"), - allele_alt = c("T","C", NA,"C","G","A")) + allele_ref = c("C","A","T","C","G","T"), + allele_alt = c("G","T","C", NA,"C","A")) - test_gt <- gen_tibble(x = test_genotypes, indiv_meta = test_indiv_meta, loci = test_loci, + test_gt_new_order <- gen_tibble(x = test_genotypes, indiv_meta = test_indiv_meta, loci = test_loci, backingfile = tempfile(), quiet = TRUE) - #ld - expect_error(loci_ld_clump(test_gt, thr_r2 = 0.2), "Your loci are not sorted, try using:") - #reorder the loci - show_loci(test_gt) <- test_gt %>% show_loci() %>% arrange(chr_int,position) - - show_loci(test_gt) + # clumping generates erro + expect_error(loci_ld_clump(test_gt_new_order, thr_r2 = 0.2), "Your loci are not sorted, try using:") + # reorder the loci + show_loci(test_gt_new_order) <- test_gt_new_order %>% show_loci() %>% arrange(chr_int,position) + # try again + keep_reordered <- loci_ld_clump(test_gt_new_order, thr_r2 = 0.2, return_id=TRUE) + # calculate the expected result keep <- loci_ld_clump(test_gt, thr_r2 = 0.2, return_id=TRUE) - expect_true(all.equal(keep, c(5, 1, 2, 3, 4)) == TRUE) - + # compare + expect_equal(keep, keep_reordered) }) test_that("loci_ld_clump works on a grouped gt",{