diff --git a/ImageD11/nbGui/TDXRD/0_segment_frelon.ipynb b/ImageD11/nbGui/TDXRD/0_segment_frelon.ipynb new file mode 100755 index 00000000..4596fbee --- /dev/null +++ b/ImageD11/nbGui/TDXRD/0_segment_frelon.ipynb @@ -0,0 +1,461 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8deabe5b", + "metadata": {}, + "source": [ + "# Jupyter notebook based on ImageD11 to process 3DXRD data\n", + "# Written by Haixing Fang, Jon Wright and James Ball\n", + "## Date: 10/09/2024" + ] + }, + { + "cell_type": "markdown", + "id": "6835a47c-a552-4d1d-b605-1867dd631b2a", + "metadata": {}, + "source": [ + "This notebook will help you to extract the locations of diffraction peaks on your detector images.\n", + "\n", + "It will also merge together your 2D spots (on a stack of detector images with different omega angles).\n", + "\n", + "We merge across omega because we often see the same spot twice on multiple detector images.\n", + "\n", + "The results are saved to the PROCESSED_DATA folder of the experiment, inside the sample and dataset folders that you select within this notebook\n", + "\n", + "## NOTE: These notebooks are under active development\n", + "They require the latest version of ImageD11 from Git to run.\n", + "\n", + "If you don't have this set up yet, you can run the below cell.\n", + "\n", + "It will automatically download and install ImageD11 to your home directory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2402147c-5513-4907-8ca9-76e3e252df0c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7a943975-9dc1-4b89-af44-4283350def66", + "metadata": { + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# this cell is tagged with 'parameters'\n", + "# to view the tag, select the cell, then find the settings gear icon (right or left sidebar) and look for Cell Tags\n", + "\n", + "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )\n", + "\n", + "# Experts : update these files for your detector if you need to\n", + "\n", + "# give dx/dy as tuple instead of spline\n", + "# Since 2024: there is no good spline for a detector at ID11. You probably want to use an e2dx, e2dy file\n", + "# You can provide this as a simple string:\n", + "# splinefile = '/path/to/spline.spline'\n", + "# or as a tuple of strings for e2dx/e2dy files\n", + "splinefile = ('/data/id11/3dxrd/inhouse/Frelon36/frelon36_spline_20240604_dx.edf','/data/id11/3dxrd/inhouse/Frelon36/frelon36_spline_20240604_dy.edf')\n", + "bgfile = None # 'bg.edf'\n", + "maskfile = '/data/id11/inhouse1/ewoks/detectors/files/Frelon2k_C36/mask.edf'\n", + "\n", + "detector = \"frelon3\" # fixme - guess this from masterfile + scan\n", + "omegamotor = \"diffrz\"\n", + "dtymotor = \"diffty\"\n", + "\n", + "# Default segmentation options\n", + "options = {\n", + " \"bgfile\":bgfile,\n", + " \"maskfile\":maskfile,\n", + " \"threshold\":70,\n", + " \"smoothsigma\":1.0,\n", + " \"bgc\":0.9,\n", + " \"minpx\":3,\n", + " \"m_offset_thresh\":100,\n", + " \"m_ratio_thresh\":150,\n", + "}\n", + "\n", + "# EXPERTS: These can be provided as papermill parameters. Users, leave these as None for now...\n", + "dataroot = None\n", + "analysisroot = None\n", + "sample = None\n", + "dataset = None\n", + "scans = [\"1.1\",]\n", + "\n", + "dset_prefix = \"top_\" # some common string in the names of the datasets if processing multiple scans" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9b5c1db6-5a32-4294-abef-cfc2150d24de", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# import functions we need\n", + "\n", + "import glob, pprint\n", + "\n", + "import ImageD11.sinograms.dataset\n", + "import ImageD11.sinograms.lima_segmenter\n", + "import ImageD11.sinograms.assemble_label\n", + "import ImageD11.sinograms.properties\n", + "\n", + "import numpy as np\n", + "import fabio\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.colors import LogNorm\n", + "from skimage import filters, measure, morphology\n", + "import ipywidgets as widgets\n", + "import h5py\n", + "from IPython.display import display\n", + "%matplotlib widget\n", + "\n", + "from ImageD11.nbGui import nb_utils as utils\n", + "from ImageD11.nbGui import segmenter_gui\n", + "\n", + "from ImageD11.frelon_peaksearch import worker, segment_dataset, guess_bg" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5560db3e-720d-440e-954d-6dc313f6c460", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Set up the file paths. Edit this if you are not at ESRF or not using the latest data policy.\n", + "if dataroot is None:\n", + " dataroot, analysisroot = segmenter_gui.guess_ESRF_paths() \n", + "\n", + "if len(dataroot)==0:\n", + " print(\"Please fix in the dataroot and analysisroot folder names above!!\")\n", + "print('dataroot =',repr(dataroot))\n", + "print('analysisroot =',repr(analysisroot))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "de77981e-c3bf-4a29-8944-95286831ac34", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# List the samples available:\n", + "segmenter_gui.printsamples(dataroot)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "187950bd-18b5-4bd4-80da-2a0c7a984b11", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# USER: Decide which sample\n", + "if sample is None:\n", + " sample = 'sample'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2b2a72fa-ff6d-4e45-89b7-fa64adb62214", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# List the datasets for that sample:\n", + "segmenter_gui.printdatasets( dataroot, sample )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "90e2aeb5-8893-4f0f-bf4f-de2c541a83df", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# USER: Decide which dataset\n", + "if dataset is None:\n", + " dataset = \"dataset\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ad077c4b-39cc-4b90-9637-33c32f12e364", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# create ImageD11 dataset object\n", + "\n", + "ds = ImageD11.sinograms.dataset.DataSet(dataroot=dataroot,\n", + " analysisroot=analysisroot,\n", + " sample=sample,\n", + " dset=dataset,\n", + " detector=detector,\n", + " omegamotor=omegamotor,\n", + " dtymotor=dtymotor)\n", + "ds.import_all(scans=scans)\n", + "if isinstance(splinefile, (tuple, list)) and len(splinefile) == 1:\n", + " # we have (\"splinefile\", )\n", + " ds.splinefile = splinefile[0] # take the splinefile out of the tuple\n", + "elif isinstance(splinefile, (tuple, list)):\n", + " # we have (e2dx, e2dy)\n", + " ds.e2dxfile, ds.e2dyfile = splinefile\n", + "else:\n", + " # we have \"splinefile\"\n", + " ds.splinefile = splinefile\n", + "ds.maskfile = maskfile\n", + "ds.bgfile = bgfile\n", + "ds.save()\n", + "rawdata_path = ds.dataroot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8822b96c-a33b-4bf2-9d95-e42d6d90e55b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# normally not needed:\n", + "\n", + "# bg = guess_bg( ds )\n", + "# plt.imshow(bg)\n", + "# fabio.edfimage.edfimage(bg).save('bg.edf')\n", + "# plt.colorbar()\n", + "# ds.bgfile = 'bg.edf'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "051901fc-e8a6-455e-9418-17823c6b222e", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%matplotlib widget" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68b22a6a-9325-40f4-af9d-945c0187ffae", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ui = segmenter_gui.FrelonSegmenterGui(ds, worker, segment_dataset, **options)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eee00548-3a48-44d0-b4ad-e71b71de95ca", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "options = ui.getopts()\n", + "print(options)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a1795a9-16eb-430d-a246-a26b12c35e77", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# now we run the segmenter on all our data\n", + "\n", + "cf_2d, cf_3d = segment_dataset(ds, options)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0fa07e53-93f4-4ce9-b0e5-1da5e6a5d511", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# display some peaks\n", + "f,a=plt.subplots(1,2,figsize=(12,6))\n", + "a[0].plot(cf_3d.f_raw,cf_3d.s_raw,'.',ms=1)\n", + "a[0].set(xlabel='fast index', ylabel='slow index',aspect='equal', title='peaks on detector')\n", + "a[1].plot(cf_3d.omega,cf_3d.sum_intensity,'.',ms=1)\n", + "a[1].set(xlabel='omega',ylabel='sum intensity',yscale='log',title='peaks vs omega');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "197e8418-030b-4901-8e8f-9f8b1df7c017", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ImageD11.columnfile.colfile_to_hdf(cf_2d, ds.col2dfile)\n", + "ImageD11.columnfile.colfile_to_hdf(cf_3d, ds.col3dfile)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7085183c-1991-49b3-af09-abe119542166", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds.save()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53e92fd0-8088-4746-b2bb-2735a7cd015e", + "metadata": {}, + "outputs": [], + "source": [ + "# Now that we're happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", + "# by default this will do all samples in sample_list, all datasets with a prefix of dset_prefix\n", + "# you can add samples and datasets to skip in skips_dict\n", + "\n", + "# you can optionally skip samples\n", + "# skips_dict = {\n", + "# \"FeAu_0p5_tR\": [\"ff6\",]\n", + "# }\n", + "# otherwise by default skip nothing:\n", + "skips_dict = {\n", + " ds.sample: []\n", + "}\n", + "\n", + "sample_list = [ds.sample, ]\n", + "\n", + "samples_dict = utils.find_datasets_to_process(rawdata_path, skips_dict, dset_prefix, sample_list)\n", + "\n", + "print(samples_dict)\n", + " \n", + "# manual override:\n", + "# samples_dict = {\"FeAu_0p5_tR_nscope\": [\"top_100um\", \"top_150um\"]}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ac6a298f-1405-4d90-b677-7a29c04de67e", + "metadata": {}, + "outputs": [], + "source": [ + "for sample, datasets in samples_dict.items():\n", + " for dataset in datasets:\n", + " print(f\"Processing dataset {dataset} in sample {sample}\")\n", + " print(\"Importing DataSet object\")\n", + " ds = ImageD11.sinograms.dataset.DataSet(dataroot=ds.dataroot,\n", + " analysisroot=ds.analysisroot,\n", + " sample=sample,\n", + " dset=dataset,\n", + " detector=detector,\n", + " omegamotor=omegamotor,\n", + " dtymotor=dtymotor)\n", + " \n", + " if os.path.exists(ds.col2dfile):\n", + " print(f\"Found existing cf_2d for {dataset} in {sample}, skipping\")\n", + " continue\n", + " \n", + " ds.import_all(scans=scans)\n", + " print(f\"I have a DataSet {ds.dset} in sample {ds.sample}\")\n", + " if isinstance(splinefile, (tuple, list)) and len(splinefile) == 1:\n", + " # we have (\"splinefile\", )\n", + " ds.splinefile = splinefile[0] # take the splinefile out of the tuple\n", + " elif isinstance(splinefile, (tuple, list)):\n", + " # we have (e2dx, e2dy)\n", + " ds.e2dxfile, ds.e2dyfile = splinefile\n", + " else:\n", + " # we have \"splinefile\"\n", + " ds.splinefile = splinefile\n", + " \n", + " ds.maskfile = maskfile\n", + " ds.bgfile = bgfile\n", + " ds.save()\n", + " \n", + " print(\"Peaksearching\")\n", + " cf_2d, cf_3d = segment_dataset(ds, options)\n", + " \n", + " print(\"Saving peaks to file\")\n", + " ImageD11.columnfile.colfile_to_hdf(cf_2d, ds.col2dfile)\n", + " ImageD11.columnfile.colfile_to_hdf(cf_3d, ds.col3dfile)\n", + " \n", + " ds.save()\n", + "print('Done!')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab892957-5ce7-4f04-a01c-c04cc9a2715c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (main)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ImageD11/nbGui/TDXRD/2_3DXRD_index.ipynb b/ImageD11/nbGui/TDXRD/1_index_default.ipynb similarity index 92% rename from ImageD11/nbGui/TDXRD/2_3DXRD_index.ipynb rename to ImageD11/nbGui/TDXRD/1_index_default.ipynb index e9844c87..66661d97 100755 --- a/ImageD11/nbGui/TDXRD/2_3DXRD_index.ipynb +++ b/ImageD11/nbGui/TDXRD/1_index_default.ipynb @@ -24,8 +24,66 @@ }, "outputs": [], "source": [ - "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())\n", - "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )" + "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# this cell is tagged with 'parameters'\n", + "# to view the tag, select the cell, then find the settings gear icon (right or left sidebar) and look for Cell Tags\n", + "\n", + "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )\n", + "\n", + "# desination of H5 files\n", + "# replace below with e.g.:\n", + "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", + "\n", + "dset_path = ''\n", + "\n", + "phase_str = 'Fe'\n", + "\n", + "# path to parameters .json/.par\n", + "parfile = ''\n", + "\n", + "# peak filtration options\n", + "cf_strong_frac = 0.9837\n", + "cf_strong_dsmax = 1.01\n", + "cf_strong_dstol = 0.01\n", + "\n", + "# indexing options\n", + "indexer_ds_tol = 0.01\n", + "\n", + "# we have to choose which rings we want to generate orientations on\n", + "# generally we want two or three low-multiplicity rings that are isolated from other phases\n", + "# take a look at the ring assignment output from a few cells above, and choose two or three\n", + "rings_for_gen = [0, 1]\n", + "\n", + "# now we want to decide which rings to score our found orientations against\n", + "# generally we can just exclude dodgy rings (close to other phases, only a few peaks in etc)\n", + "rings_for_scoring = [0, 1, 2, 3]\n", + "\n", + "# the sequence of hkl tolerances the indexer will iterate through\n", + "hkl_tols_seq = [0.01, 0.02, 0.03, 0.04]\n", + "# the sequence of minpks fractions the indexer will iterate through\n", + "fracs = [0.9, 0.75]\n", + "# the max number of UBIs we can find per pair of rings\n", + "max_grains = 1000\n", + "\n", + "# makemap parameters\n", + "makemap_hkl_tol_seq = [0.05, 0.025, 0.01]\n", + "symmetry = \"cubic\"\n", + "\n", + "absolute_minpks = 120\n", + "\n", + "dset_prefix = 'ff'" ] }, { @@ -59,21 +117,6 @@ "from ImageD11.peakselect import select_ring_peaks_by_intensity" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# desination of H5 files\n", - "# replace below with e.g.:\n", - "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", - "\n", - "dset_path = ''" - ] - }, { "cell_type": "code", "execution_count": null, @@ -87,11 +130,24 @@ "ds = ImageD11.sinograms.dataset.load(dset_path)\n", "sample = ds.sample\n", "dataset = ds.dset\n", + "rawdata_path = ds.dataroot\n", + "processed_data_root_dir = ds.analysisroot\n", "\n", "print(ds)\n", "print(ds.shape)" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# also set our parameters for indexing\n", + "ds.parfile = parfile\n", + "ds.save()" + ] + }, { "cell_type": "code", "execution_count": null, @@ -111,7 +167,6 @@ "outputs": [], "source": [ "# now let's select a phase to index from our parameters json\n", - "phase_str = 'Fe'\n", "\n", "ucell = ds.phases.unitcells[phase_str]\n", "\n", @@ -175,10 +230,6 @@ "# if the blue line does not look elbow-shaped in the logscale plot, try changing the \"doplot\" parameter (the y scale of the logscale plot) until it does\n", "\n", "\n", - "cf_strong_frac = 0.9837\n", - "cf_strong_dsmax = 1.01\n", - "cf_strong_dstol = 0.01\n", - "\n", "cf_strong = select_ring_peaks_by_intensity(cf_3d, frac=cf_strong_frac, dsmax=cf_strong_dsmax, doplot=0.8, dstol=cf_strong_dstol)\n", "print(f\"Got {cf_strong.nrows} strong peaks for indexing\")\n", "cf_strong_path = f'{sample}_{dataset}_3d_peaks_strong.flt'\n", @@ -246,7 +297,6 @@ "\n", "# USER: set a tolerance in d-space (for assigning peaks to powder rings)\n", "\n", - "indexer_ds_tol = 0.05\n", "indexer.ds_tol = indexer_ds_tol\n", "\n", "# change the log level so we can see what the ring assigments look like\n", @@ -292,23 +342,9 @@ "outputs": [], "source": [ "# now we are indexing!\n", - "# we have to choose which rings we want to generate orientations on\n", - "# generally we want two or three low-multiplicity rings that are isolated from other phases\n", - "# take a look at the ring assignment output from a few cells above, and choose two or three\n", - "rings_for_gen = [0, 1]\n", "\n", - "# now we want to decide which rings to score our found orientations against\n", - "# generally we can just exclude dodgy rings (close to other phases, only a few peaks in etc)\n", - "rings_for_scoring = [0, 1, 2, 3]\n", - "\n", - "# the sequence of hkl tolerances the indexer will iterate through\n", - "hkl_tols_seq = [0.01, 0.02, 0.03, 0.04]\n", - "# the sequence of minpks fractions the indexer will iterate through\n", - "fracs = [0.9, 0.75]\n", "# the tolerance in g-vector angle\n", "cosine_tol = np.cos(np.radians(90 - ds.ostep))\n", - "# the max number of UBIs we can find per pair of rings\n", - "max_grains = 1000\n", "\n", "grains, indexer = utils.do_index(cf=cf_strong,\n", " dstol=indexer.ds_tol,\n", @@ -359,33 +395,9 @@ "tmp_map_path = f'{sample}_{dataset}_grains.map'\n", "\n", "new_flt_path = f'{sample}_{dataset}_3d_peaks_strong_all_rings.flt.new' # flt file containing assignments from makemap\n", - "unindexed_flt_path = f'{sample}_{dataset}_3d_peaks_strong_all_rings.flt.unindexed' # remaining unassigned peaks from makemap" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "ImageD11.grain.write_grain_file(tmp_ubi_path, grains)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "omegas_sorted = np.sort(ds.omega)[0]\n", - "omega_step = np.round(np.diff(omegas_sorted).mean(), 3)\n", - "omega_slop = omega_step/2\n", + "unindexed_flt_path = f'{sample}_{dataset}_3d_peaks_strong_all_rings.flt.unindexed' # remaining unassigned peaks from makemap\n", "\n", - "makemap_hkl_tol_seq = [0.05, 0.025, 0.01]" + "ImageD11.grain.write_grain_file(tmp_ubi_path, grains)" ] }, { @@ -416,7 +428,9 @@ }, "outputs": [], "source": [ - "symmetry = \"cubic\"\n", + "# now run makemap in a loop\n", + "\n", + "omega_slop = ds.ostep/2\n", "\n", "for inc, makemap_tol in enumerate(makemap_hkl_tol_seq):\n", " print(f\"Running makemap {inc+1}/{len(makemap_hkl_tol_seq)}\")\n", @@ -426,6 +440,15 @@ " makemap_output = !makemap.py -p {oldparfile} -u {tmp_map_path} -U {tmp_map_path} -f {cf_strong_allrings_path} -F {unindexed_flt_path} -s {symmetry} -t {makemap_hkl_tol_seq[inc]} --omega_slop={omega_slop} --no_sort" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "utils.plot_grain_histograms(new_flt_path, tmp_map_path, oldparfile, omega_slop, tol=makemap_hkl_tol_seq[-1])" + ] + }, { "cell_type": "code", "execution_count": null, @@ -491,19 +514,11 @@ }, "outputs": [], "source": [ - "# find the spike\n", - "absolute_minpks = 120" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# filter out grains with fewer than 15 peaks\n", + "# filter out grains with fewer than absolute_minpks peaks\n", + "\n", + "# most grains should have a high number of peaks\n", + "# choose absolute_minpks such that the low-peak grains are removed\n", + "\n", "grains_filtered = [grain for grain in grains2 if float(grain.npks) > absolute_minpks]" ] }, @@ -551,6 +566,15 @@ "grains_filtered = ImageD11.grain.read_grain_file(map_path)" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "utils.plot_grain_histograms(final_new_flt_path, map_path, oldparfile, omega_slop, tol=makemap_hkl_tol_seq[-1])" + ] + }, { "cell_type": "code", "execution_count": null, @@ -643,37 +667,27 @@ "metadata": {}, "outputs": [], "source": [ - "# change to 0 to allow all cells to be run automatically\n", - "if 1:\n", - " raise ValueError(\"Hello!\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Now that we are happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", + "# Now that we're happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", "# by default this will do all samples in sample_list, all datasets with a prefix of dset_prefix\n", "# you can add samples and datasets to skip in skips_dict\n", "\n", + "# you can optionally skip samples\n", + "# skips_dict = {\n", + "# \"FeAu_0p5_tR\": [\"ff6\",]\n", + "# }\n", + "# otherwise by default skip nothing:\n", "skips_dict = {\n", - " \"FeAu_0p5_tR\": []\n", + " ds.sample: []\n", "}\n", "\n", - "# USER: Change this prefix to match the naming convention of your datasets\n", - "# e.g if your slices are formatted like [\"ff_z0\", \"ff_z1\", \"ff_z2\"] etc, then the prefix could be \"ff\" or \"ff_z\"\n", + "sample_list = [ds.sample, ]\n", "\n", - "dset_prefix = \"ff\"\n", + "samples_dict = utils.find_datasets_to_process(rawdata_path, skips_dict, dset_prefix, sample_list)\n", "\n", - "sample_list = [\"FeAu_0p5_tR\"]\n", - " \n", - "samples_dict = utils.find_datasets_to_process(ds.dataroot, skips_dict, dset_prefix, sample_list)\n", "print(samples_dict)\n", - "\n", - "# manual override example:\n", - "# samples_dict = {\"FeAu_0p5_tR\": [\"ff1\", \"ff2\"]}" + " \n", + "# manual override:\n", + "# samples_dict = {\"FeAu_0p5_tR_nscope\": [\"top_100um\", \"top_150um\"]}" ] }, { @@ -698,7 +712,10 @@ " print(f\"Found existing grains file for {dataset} in {sample}, skipping\")\n", " continue\n", " \n", + " ds.parfile = parfile\n", + " ds.save()\n", " ds.phases = ds.get_phases_from_disk()\n", + " \n", " ucell = ds.phases.unitcells[phase_str]\n", " sample = ds.sample\n", " dataset = ds.dset\n", diff --git a/ImageD11/nbGui/TDXRD/2_3DXRD_index_friedel.ipynb b/ImageD11/nbGui/TDXRD/1_index_friedel.ipynb similarity index 70% rename from ImageD11/nbGui/TDXRD/2_3DXRD_index_friedel.ipynb rename to ImageD11/nbGui/TDXRD/1_index_friedel.ipynb index bebb5426..ed477473 100755 --- a/ImageD11/nbGui/TDXRD/2_3DXRD_index_friedel.ipynb +++ b/ImageD11/nbGui/TDXRD/1_index_friedel.ipynb @@ -6,26 +6,92 @@ "source": [ "# Jupyter notebook based on ImageD11 to process 3DXRD data\n", "# Written by Haixing Fang, Jon Wright and James Ball\n", - "## Date: 27/02/2024" + "## Date: 17/02/2025" ] }, { - "cell_type": "markdown", - "metadata": {}, + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ - "Now we have good experimental parameters, we can index more grains!" + "import os\n", + "\n", + "os.environ['OMP_NUM_THREADS'] = '1'\n", + "os.environ['OPENBLAS_NUM_THREADS'] = '1'\n", + "os.environ['MKL_NUM_THREADS'] = '1'\n", + "\n", + "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { - "tags": [] + "tags": [ + "parameters" + ] }, "outputs": [], "source": [ - "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())\n", - "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )" + "# this cell is tagged with 'parameters'\n", + "# to view the tag, select the cell, then find the settings gear icon (right or left sidebar) and look for Cell Tags\n", + "\n", + "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )\n", + "\n", + "dset_path = ''\n", + "\n", + "phase_str = 'Fe'\n", + "\n", + "# path to parameters .json/.par\n", + "parfile = ''\n", + "\n", + "# peak filtration options\n", + "cf_strong_frac = 0.991\n", + "cf_strong_dsmax = 1.01\n", + "cf_strong_dstol = 0.01\n", + "\n", + "# friedel pair search options\n", + "womega = 1.0\n", + "weta = 1.0\n", + "wtth = 1.5\n", + "wI = 0.5\n", + "\n", + "# indexing options\n", + "indexer_ds_tol = 0.003\n", + "\n", + "rings_for_gen = [1, 3]\n", + "\n", + "# now we want to decide which rings to score our found orientations against\n", + "# generally we can just exclude dodgy rings (close to other phases, only a few peaks in etc)\n", + "rings_for_scoring = [0, 1, 2, 3]\n", + "\n", + "# the sequence of hkl tolerances the indexer will iterate through\n", + "hkl_tols_seq = [0.01, 0.02]\n", + "# the sequence of minpks fractions the indexer will iterate through\n", + "fracs = [0.9, 0.6]\n", + "\n", + "# the max number of UBIs we can find per pair of rings\n", + "max_grains = 1000\n", + "\n", + "# makemap refinement options\n", + "symmetry = \"cubic\"\n", + "\n", + "gridpars = {\n", + " 'DSTOL' : 0.004,\n", + " 'NUL' : True,\n", + " 'FITPOS' : True,\n", + " 'tolangle' : 0.25,\n", + " 'toldist' : 100.,\n", + " 'NTHREAD' : 1 ,\n", + " 'NPKS': 25\n", + "}\n", + "\n", + "absolute_minpks = 25\n", + "\n", + "dset_prefix = 'ff'" ] }, { @@ -59,22 +125,7 @@ "from ImageD11.sinograms import properties, dataset\n", "\n", "from ImageD11.blobcorrector import eiger_spatial\n", - "from ImageD11.peakselect import select_ring_peaks_by_intensity" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# desination of H5 files\n", - "# replace below with e.g.:\n", - "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", - "\n", - "dset_path = ''" + "from ImageD11.peakselect import select_ring_peaks_by_intensity, filter_peaks_by_phase" ] }, { @@ -91,10 +142,22 @@ "\n", "sample = ds.sample\n", "dataset = ds.dset\n", + "rawdata_path = ds.dataroot\n", + "processed_data_root_dir = ds.analysisroot\n", "print(ds)\n", "print(ds.shape)" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ds.parfile = parfile\n", + "ds.save()" + ] + }, { "cell_type": "code", "execution_count": null, @@ -114,7 +177,6 @@ "outputs": [], "source": [ "# now let's select a phase to index from our parameters json\n", - "phase_str = 'Fe'\n", "\n", "ucell = ds.phases.unitcells[phase_str]\n", "\n", @@ -180,10 +242,6 @@ "source": [ "# here we are filtering our peaks (cf_3d) to select only the strong peaks from the first ring\n", "\n", - "cf_strong_frac = 0.9837\n", - "cf_strong_dsmax = 0.6\n", - "cf_strong_dstol = 0.01\n", - "\n", "cf_strong = select_ring_peaks_by_intensity(cf_3d, frac=cf_strong_frac, dsmax=cf_strong_dsmax, doplot=0.8, dstol=cf_strong_dstol)\n", "print(f\"Got {cf_strong.nrows} strong peaks for indexing\")" ] @@ -219,18 +277,19 @@ }, "outputs": [], "source": [ + "# compute Lorenz factor\n", "lf = ImageD11.refinegrains.lf(cf_strong.tth, cf_strong.eta)\n", "\n", - "f = plt.figure(figsize=(15,5))\n", + "f = plt.figure(figsize=(15,5), layout='constrained')\n", "ax = f.add_subplot()\n", "\n", "# select peaks between 3 and 5 degrees in omega\n", "om1 = (cf_strong.omega < 5) & (cf_strong.omega > 3)\n", "\n", "# plot omega against intensity for those peaks, coloured by eta (azimuthal position on the ring)\n", - "ax.scatter(cf_strong.omega[om1], np.log10(cf_strong.sum_intensity)[om1], c=cf_strong.eta[om1], marker='o')\n", + "ax.scatter(cf_strong.omega[om1], cf_strong.sum_intensity[om1], c=cf_strong.eta[om1], marker='o')\n", "\n", - "# the friedel pair of these peaks should be 180 degrees away\n", + "# the friedel pair of these peaks should be 180 degrees away in eta\n", "etapair = 180 - cf_strong.eta\n", "\n", "# modulate\n", @@ -240,7 +299,10 @@ "om2 = (cf_strong.omega < 185) & (cf_strong.omega > 183)\n", "\n", "# plot omega against intensity for the friedel pairs as crosses\n", - "ax.scatter(cf_strong.omega[om2] - 180, np.log10(cf_strong.sum_intensity)[om2], c=etapair[om2], marker='+')\n", + "ax.scatter(cf_strong.omega[om2] - 180, cf_strong.sum_intensity[om2], c=etapair[om2], marker='+')\n", + "ax.semilogy()\n", + "\n", + "ax.set(xlabel='omega (deg)', ylabel='peak intensity', title='Coloured by eta')\n", "\n", "# for valid friedel pairs, we should see 'o' and '+' markers close together in omega and intensity, with similar colours (eta)\n", "plt.show()" @@ -263,58 +325,69 @@ " eta = np.degrees(np.arctan2( -dY, dZ ))\n", " return tth, eta\n", "\n", - "def find_friedel_pairs(cf_in, doplot=False):\n", - " womega = 1.5\n", - " weta = 0.2\n", - " wtth = 1.5\n", - " wI = 0.5\n", + "def find_friedel_pairs(cf_in, womega=1.5, weta=0.2, wtth=1.5, wI=0.5, doplot=False):\n", + " # create a 4-dimensional tree\n", + " # dimensions are omega, eta, tth, intensity\n", " t1 = scipy.spatial.cKDTree( np.transpose( [ \n", " womega*(cf_in.omega%360),\n", " weta*(cf_in.eta%360),\n", " wtth*cf_in.tth,\n", " wI*np.log10(cf_in.sum_intensity) ] ))\n", - "\n", + " \n", + " # create another tree for the friedel pair side (omega + 180, 180 - eta)\n", " t2 = scipy.spatial.cKDTree( np.transpose([ \n", " womega*((cf_in.omega+180)%360),\n", " weta*((180-cf_in.eta)%360),\n", " wtth* cf_in.tth,\n", " wI*np.log10(cf_in.sum_intensity) ] ))\n", " \n", + " # create a distance matrix between trees with a max distance of 1, returning a sparse matrix\n", " coo = t1.sparse_distance_matrix( t2, max_distance=1, output_type='coo_matrix' ) # 1 degree eta might be tight?\n", " \n", " inds = np.arange(cf_in.nrows)\n", + " \n", + " # mask for peaks on one side of the friedel pair\n", " p1 = inds[coo.row]\n", + " # mask for peaks on the other side of the friedel pair\n", " p2 = inds[coo.col]\n", " \n", + " # compute tth-eta of friedel pairs\n", " tth, eta = calc_tth_eta( cf_in, p1, p2 )\n", + " # mask for intensity for friedel pairs\n", " s1 = cf_3d.sum_intensity[p1]\n", " s2 = cf_3d.sum_intensity[p2]\n", " \n", + " # convert tth to dstar\n", " dstar = 2*np.sin(np.radians(tth)/2)/cf_in.parameters.get('wavelength')\n", " \n", " if doplot:\n", - " f,a = plt.subplots(2,1,figsize=(20,6))\n", + " f,a = plt.subplots(2,1,figsize=(20,6), layout='constrained', sharex=True)\n", " a[0].hist2d(dstar,eta,bins=(2000,360), norm='log', weights=s1+s2)\n", " a[0].plot(ucell.ringds, np.zeros_like(ucell.ringds),\"|r\",lw=1,ms=90)\n", - " a[0].set(ylabel='eta/deg')\n", - " a[1].hist2d(dstar,coo.data,\n", + " a[0].set(ylabel='eta (deg)')\n", + " a[1].hist2d(dstar,coo.data, # sum of squares of distance matrix\n", " # np.log(s1+s2),\n", " bins=(1000,128), norm='log');\n", " a[1].plot( ucell.ringds, np.full_like(ucell.ringds,4),\"|r\",lw=1,ms=20)\n", " a[1].set(xlabel='dstar', ylabel='distance for search')\n", + " f.suptitle(' Top: D-star vs eta of Friedel pairs \\n Bottom: D-star vs 4D tree distance')\n", " plt.show()\n", " \n", " if doplot:\n", - " f,a = plt.subplots(t1.data.shape[1],1,figsize=(20,6))\n", + " f,a = plt.subplots(t1.data.shape[1],1,figsize=(20,6), layout='constrained', sharex=True)\n", " for i in range(t1.data.shape[1]):\n", " a[i].hist2d(dstar, t1.data[coo.row,i] - t2.data[coo.col,i], bins=(1000,128), norm='log')\n", - " \n", + " a[i].set(ylabel=['Omega', 'Eta', 'Two-theta', 'Log peak intensity'][i])\n", + " f.suptitle('D-star vs error in [omega, eta, tth, intensity] for the friedel pair')\n", + " f.supxlabel('dstar')\n", " plt.show()\n", - " \n", + " \n", + " # Mask to powder rings\n", " m = np.zeros_like(p1, dtype=bool)\n", " for d in ucell.ringds:\n", " m |= abs(dstar - d)<0.002\n", - " \n", + " \n", + " # make columnfiles for each side of the friedel pair\n", " c1 = cf_in.copyrows( p1[m] )\n", " c2 = cf_in.copyrows( p2[m] )\n", " \n", @@ -324,31 +397,40 @@ " c2.ds[:] = dstar[m]\n", " \n", " if doplot:\n", - " fig, ax = plt.subplots()\n", + " fig, ax = plt.subplots(layout='constrained')\n", " ax.plot(c1.eta%360, eta[m]%360,',')\n", + " ax.set(xlabel='eta (deg)', ylabel='eta (deg)', title='Observed vs computed eta for Friedel pairs (c1)')\n", " plt.show()\n", - " \n", + " \n", + " # computed eta values (variable eta) matches c1, so we take c1.eta as eta, then recompute c2.eta\n", " c1.eta[:] = eta[m]\n", " e2 = 180 - eta[m]\n", " c2.eta[:] = np.where( e2 > 180, e2-360, e2)\n", " \n", + " # combine paired peaks into one columnfile\n", " cpair = ImageD11.columnfile.colfile_from_dict({\n", " t: np.concatenate( (c1[t], c2[t]) ) for t in c1.titles } )\n", " cpair.parameters = cf_in.parameters\n", " \n", " if doplot:\n", - " plt.figure()\n", + " plt.figure(figsize=(20,6), layout='constrained')\n", " plt.plot(c1.ds, c1.eta, ',')\n", " plt.plot(c2.ds, c2.eta, ',')\n", " plt.plot(cpair.ds, cpair.eta, ',')\n", + " plt.plot(ucell.ringds, np.full_like(ucell.ringds,4),\"|r\",lw=1,ms=20)\n", + " plt.xlabel('D-star')\n", + " plt.ylabel('Eta')\n", " plt.show()\n", " \n", " cpair.gx[:],cpair.gy[:],cpair.gz[:] = ImageD11.transform.compute_g_vectors( cpair.tth, cpair.eta, cpair.omega, cpair.parameters.get('wavelength') )\n", " \n", " if doplot:\n", - " plt.figure()\n", + " plt.figure(figsize=(20,6), layout='constrained')\n", " plt.plot(cpair.ds, cpair.sum_intensity*np.exp(5*cpair.ds**2),',')\n", " plt.semilogy()\n", + " plt.plot(ucell.ringds, np.full_like(ucell.ringds,4),\"|r\",lw=1,ms=20)\n", + " plt.xlabel('D-star')\n", + " plt.ylabel('Weighted Sum intensity')\n", " plt.show()\n", " \n", " return cpair" @@ -362,120 +444,62 @@ }, "outputs": [], "source": [ - "cf_friedel_pairs = find_friedel_pairs(cf_3d, doplot=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# here we are filtering our peaks (cf_3d) to select only the strong peaks from the first ring\n", - "\n", - "cf_friedel_pairs_strong_frac = 0.9837\n", - "cf_friedel_pairs_strong_dsmax = cf_friedel_pairs.ds.max()\n", - "cf_friedel_pairs_strong_dstol = 0.01\n", - "\n", - "cf_friedel_pairs_strong = select_ring_peaks_by_intensity(cf_friedel_pairs, frac=cf_friedel_pairs_strong_frac, dsmax=cf_friedel_pairs_strong_dsmax, doplot=0.8, dstol=cf_friedel_pairs_strong_dstol)\n", - "print(f\"Got {cf_friedel_pairs_strong.nrows} strong peaks for indexing\")\n", - "# cf_strong_path = f'{sample}_{dataset}_3d_peaks_strong.flt'\n", - "# cf_strong.writefile(cf_strong_path)" + "cf_friedel_pairs = find_friedel_pairs(cf_strong, womega=womega, weta=weta, wtth=wtth, wI=wI, doplot=True)" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [], "source": [ - "# specify our ImageD11 indexer with these peaks\n", + "# plot the results\n", "\n", - "indexer = ImageD11.indexing.indexer_from_colfile(cf_friedel_pairs_strong)\n", - "\n", - "print(f\"Indexing {cf_friedel_pairs_strong.nrows} peaks\")\n", - "\n", - "# USER: set a tolerance in d-space (for assigning peaks to powder rings)\n", - "\n", - "indexer_ds_tol = 0.05\n", - "indexer.ds_tol = indexer_ds_tol\n", - "\n", - "# change the log level so we can see what the ring assigments look like\n", - "\n", - "ImageD11.indexing.loglevel = 1\n", - "\n", - "# assign peaks to powder rings\n", - "\n", - "indexer.assigntorings()\n", - "\n", - "# change log level back again\n", - "\n", - "ImageD11.indexing.loglevel = 3" + "fig, ax = plt.subplots(layout='constrained', figsize=(10, 5))\n", + "ax.plot(cf_3d.ds, cf_3d.eta, ',', label='cf_3d')\n", + "ax.plot(cf_friedel_pairs.ds, cf_friedel_pairs.eta, ',', label='cf_friedel_pairs')\n", + "ax.set(xlabel='d-star', ylabel='eta')\n", + "ax.legend()\n", + "plt.show()" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [], "source": [ - "# let's plot the assigned peaks\n", - "\n", - "fig, ax = plt.subplots()\n", - "\n", - "# indexer.ra is the ring assignments\n", - "\n", - "ax.scatter(cf_friedel_pairs_strong.ds, cf_friedel_pairs_strong.eta, c=indexer.ra, cmap='tab20', s=1)\n", - "ax.plot( ucell.ringds, [0,]*len(ucell.ringds), '|', ms=90, c=\"red\")\n", - "ax.set_xlabel(\"d-star\")\n", - "ax.set_ylabel(\"eta\")\n", - "ax.set_xlim(cf_friedel_pairs_strong.ds.min()-0.05, cf_friedel_pairs_strong.ds.max()+0.05)\n", + "# plot the results\n", "\n", + "fig, ax = plt.subplots(layout='constrained', figsize=(10, 5))\n", + "ax.plot(cf_3d.ds, cf_3d.sum_intensity, ',', label='cf_3d')\n", + "ax.plot(cf_friedel_pairs.ds, cf_friedel_pairs.sum_intensity, ',', label='cf_friedel_pairs')\n", + "ax.set(xlabel='d-star', ylabel='sum intensity')\n", + "ax.semilogy()\n", + "ax.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [], "source": [ - "# now we are indexing!\n", - "# we have to choose which rings we want to generate orientations on\n", - "# generally we want two or three low-multiplicity rings that are isolated from other phases\n", - "# take a look at the ring assignment output from a few cells above, and choose two or three\n", - "rings_for_gen = [1, 1]\n", + "# Now we index the friedel pair resuls\n", "\n", - "# now we want to decide which rings to score our found orientations against\n", - "# generally we can just exclude dodgy rings (close to other phases, only a few peaks in etc)\n", - "rings_for_scoring = [0, 1, 2, 3, 4, 5, 6, 7, 8]\n", - "\n", - "# the sequence of hkl tolerances the indexer will iterate through\n", - "hkl_tols_seq = [0.01, 0.02, 0.03]\n", - "# the sequence of minpks fractions the indexer will iterate through\n", - "fracs = [0.5]\n", "# the tolerance in g-vector angle\n", "cosine_tol = np.cos(np.radians(90 - ds.ostep))\n", - "# the max number of UBIs we can find per pair of rings\n", - "max_grains = 1000\n", "\n", - "_, indexer = utils.do_index(cf=cf_friedel_pairs_strong,\n", - " dstol=indexer.ds_tol,\n", - " forgen=rings_for_gen,\n", - " foridx=rings_for_scoring,\n", - " hkl_tols=hkl_tols_seq,\n", - " fracs=fracs,\n", - " cosine_tol=cosine_tol,\n", - " max_grains=max_grains,\n", - " unitcell=ucell\n", + "_, indexer = utils.do_index(cf=cf_friedel_pairs,\n", + " dstol=indexer_ds_tol,\n", + " forgen=rings_for_gen,\n", + " foridx=rings_for_scoring,\n", + " hkl_tols=hkl_tols_seq,\n", + " fracs=fracs,\n", + " cosine_tol=cosine_tol,\n", + " max_grains=max_grains,\n", + " unitcell=ucell\n", ")" ] }, @@ -491,9 +515,12 @@ "\n", "indexer.histogram_drlv_fit()\n", "\n", - "plt.figure()\n", + "fig, ax = plt.subplots(layout='constrained', figsize=(10, 5))\n", "for row in indexer.histogram:\n", - " plt.plot(indexer.bins[1:-1], row[:-1],'-')" + " ax.plot(indexer.bins[1:-1], row[:-1],'-')\n", + "\n", + "ax.set(xlabel='Peak error', ylabel='npeaks')\n", + "plt.show()" ] }, { @@ -515,29 +542,23 @@ }, "outputs": [], "source": [ - "omegas_sorted = np.sort(ds.omega)[0]\n", - "omega_step = np.round(np.diff(omegas_sorted).mean(), 3)\n", - "omega_slop = omega_step/2\n", + "nproc = len(os.sched_getaffinity(os.getpid())) - 3\n", "\n", - "gridpars = {\n", - " 'DSTOL' : 0.004,\n", - " 'OMEGAFLOAT' : omega_slop,\n", - " 'COSTOL' : cosine_tol,\n", - " 'NPKS' : 10,\n", - " 'TOLSEQ' : [hkl_tols_seq[-1],],\n", - " 'SYMMETRY' : \"cubic\",\n", - " 'RING1' : [1,5],\n", - " 'RING2' : [1,5],\n", - " 'NUL' : True,\n", - " 'FITPOS' : True,\n", - " 'tolangle' : 0.25,\n", - " 'toldist' : 100.,\n", - " 'NPROC' : None, # guess from cpu_count\n", - " 'NTHREAD' : 1 ,\n", - " }\n", - "\n", - "cf_friedel_pairs_strong.addcolumn(indexer.ga.copy(), 'labels')\n", - "cf_friedel_pairs_strong.addcolumn(np.zeros(cf_friedel_pairs_strong.nrows), 'drlv2')\n", + "omega_slop = ds.ostep/2\n", + "\n", + "gridpars['TOLSEQ'] = [hkl_tols_seq[0],]\n", + "gridpars['COSTOL'] = np.cos(np.radians(90 - ds.ostep))\n", + "gridpars['NPROC'] = nproc\n", + "gridpars['OMEGAFLOAT'] = omega_slop\n", + "gridpars['SYMMETRY'] = symmetry\n", + "gridpars['RING1'] = rings_for_gen\n", + "gridpars['RING2'] = rings_for_gen\n", + "\n", + "# copy out the columnfile used by the indexer\n", + "cf_indexed = indexer.colfile.copy()\n", + "\n", + "cf_indexed.addcolumn(indexer.ga.copy(), 'labels')\n", + "cf_indexed.addcolumn(np.zeros(cf_indexed.nrows), 'drlv2')\n", "\n", "for v in 'xyz':\n", " cf_3d.parameters.stepsizes[f't_{v}'] = 0.1\n", @@ -547,16 +568,15 @@ " grains = [ImageD11.grain.grain(indexer.ubis[i].copy() ),]\n", " # only take indexed spots using Friedel pairs\n", " cfit = ImageD11.columnfile.colfile_from_dict(\n", - " { t:cf_friedel_pairs_strong[t][indexer.ga==i+1] for t in cf_friedel_pairs_strong.titles} )\n", + " { t:cf_indexed[t][indexer.ga==i+1] for t in cf_indexed.titles} )\n", " if cfit.nrows == 0:\n", " continue\n", " fitted = ImageD11.grid_index_parallel.domap( cf_3d.parameters,\n", " cfit,\n", " grains,\n", " gridpars )\n", - " fittedgrains.append( fitted[0] )\n", - " print(fitted[0].ubi)\n", - " print(fitted[0].translation, fitted[0].npks, fitted[0].nuniq )" + " if len(fitted) > 0:\n", + " fittedgrains.append( fitted[0] )" ] }, { @@ -582,22 +602,9 @@ "source": [ "fig, ax = plt.subplots()\n", "ax.hist([float(grain.npks) for grain in fittedgrains], bins=50)\n", - "# ax.semilogy()\n", "plt.show()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# find the spike\n", - "absolute_minpks = 250" - ] - }, { "cell_type": "code", "execution_count": null, @@ -682,16 +689,36 @@ "source": [ "# run makemap again against all peaks\n", "\n", - "symmetry = \"cubic\"\n", - "\n", "new_filtered_map_path = f'{sample}_{dataset}_nice_grains.map.new'\n", "new_cf_3d_path = cf_3d_path + '.new'\n", "\n", - "final_makemap_tol = 0.01\n", + "final_makemap_tol = hkl_tols_seq[0]\n", "\n", "makemap_output = !makemap.py -p {oldparfile} -u {filtered_map_path} -U {new_filtered_map_path} -f {cf_3d_path} -s {symmetry} -t {final_makemap_tol} --omega_slop={omega_slop} --no_sort" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "grains_final = ImageD11.grain.read_grain_file(new_filtered_map_path)\n", + "\n", + "# 3D scatter plot of grain positions coloured by grain volume\n", + "\n", + "utils.plot_grain_positions(grains_final, colour='npks', centre_plot=False, size_scaling=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "utils.plot_grain_histograms(new_cf_3d_path, new_filtered_map_path, oldparfile, omega_slop, tol=hkl_tols_seq[0])" + ] + }, { "cell_type": "code", "execution_count": null, @@ -700,8 +727,6 @@ }, "outputs": [], "source": [ - "grains_final = ImageD11.grain.read_grain_file(new_filtered_map_path)\n", - "\n", "# import makemap output columnfile with peak assignments\n", "cf_3d = ImageD11.columnfile.columnfile(new_cf_3d_path)\n", "\n", @@ -740,37 +765,27 @@ "metadata": {}, "outputs": [], "source": [ - "# change to 0 to allow all cells to be run automatically\n", - "if 1:\n", - " raise ValueError(\"Hello!\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Now that we are happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", + "# Now that we're happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", "# by default this will do all samples in sample_list, all datasets with a prefix of dset_prefix\n", "# you can add samples and datasets to skip in skips_dict\n", "\n", + "# you can optionally skip samples\n", + "# skips_dict = {\n", + "# \"FeAu_0p5_tR\": [\"ff6\",]\n", + "# }\n", + "# otherwise by default skip nothing:\n", "skips_dict = {\n", - " \"FeAu_0p5_tR\": []\n", + " ds.sample: []\n", "}\n", "\n", - "# USER: Change this prefix to match the naming convention of your datasets\n", - "# e.g if your slices are formatted like [\"ff_z0\", \"ff_z1\", \"ff_z2\"] etc, then the prefix could be \"ff\" or \"ff_z\"\n", + "sample_list = [ds.sample, ]\n", "\n", - "dset_prefix = \"ff\"\n", + "samples_dict = utils.find_datasets_to_process(rawdata_path, skips_dict, dset_prefix, sample_list)\n", "\n", - "sample_list = [\"FeAu_0p5_tR\"]\n", - " \n", - "samples_dict = utils.find_datasets_to_process(ds.dataroot, skips_dict, dset_prefix, sample_list)\n", "print(samples_dict)\n", - "\n", - "# manual override example:\n", - "# samples_dict = {\"FeAu_0p5_tR\": [\"ff1\", \"ff2\"]}" + " \n", + "# manual override:\n", + "# samples_dict = {\"FeAu_0p5_tR_nscope\": [\"top_100um\", \"top_150um\"]}" ] }, { @@ -799,6 +814,9 @@ " print(f\"Already have grains for {dataset} in sample {sample}, skipping\")\n", " continue\n", " \n", + " ds.parfile = parfile\n", + " ds.save()\n", + " \n", " ds.phases = ds.get_phases_from_disk()\n", " ucell = ds.phases.unitcells[phase_str]\n", " \n", @@ -809,32 +827,35 @@ " cf_3d.writefile(cf_3d_path)\n", " \n", " ucell.makerings(cf_3d.ds.max())\n", + " \n", + " print(\"Filtering to strong peaks\")\n", + " cf_strong = select_ring_peaks_by_intensity(cf_3d, frac=cf_strong_frac, dsmax=cf_strong_dsmax, doplot=False, dstol=cf_strong_dstol)\n", "\n", " print(\"Finding Friedel pairs\")\n", - " cf_friedel_pairs = find_friedel_pairs(cf_3d, doplot=False)\n", - " cf_friedel_pairs_strong_dsmax = cf_friedel_pairs.ds.max()\n", - " cf_friedel_pairs_strong = select_ring_peaks_by_intensity(cf_friedel_pairs, frac=cf_friedel_pairs_strong_frac, dsmax=cf_friedel_pairs_strong_dsmax, dstol=cf_friedel_pairs_strong_dstol)\n", + " cf_friedel_pairs = find_friedel_pairs(cf_strong, womega=womega, weta=weta, wtth=wtth, wI=wI, doplot=False)\n", " \n", " print('Finding orientations from collapsed Friedel pairs')\n", - " _, indexer = utils.do_index(cf=cf_friedel_pairs_strong,\n", - " dstol=indexer.ds_tol,\n", - " forgen=rings_for_gen,\n", - " foridx=rings_for_scoring,\n", - " hkl_tols=hkl_tols_seq,\n", - " fracs=fracs,\n", - " cosine_tol=cosine_tol,\n", - " max_grains=max_grains,\n", - " unitcell=ucell\n", - " )\n", + " cosine_tol = np.cos(np.radians(90 - ds.ostep))\n", + "\n", + " _, indexer = utils.do_index(cf=cf_friedel_pairs,\n", + " dstol=indexer_ds_tol,\n", + " forgen=rings_for_gen,\n", + " foridx=rings_for_scoring,\n", + " hkl_tols=hkl_tols_seq,\n", + " fracs=fracs,\n", + " cosine_tol=cosine_tol,\n", + " max_grains=max_grains,\n", + " unitcell=ucell\n", + " )\n", " \n", " print('Fitting positions of indexed grains')\n", - " omegas_sorted = np.sort(ds.omega)[0]\n", - " omega_step = np.round(np.diff(omegas_sorted).mean(), 3)\n", - " omega_slop = omega_step/2\n", + "\n", + " omega_slop = ds.ostep/2\n", " gridpars['OMEGAFLOAT'] = omega_slop\n", + " cf_indexed = indexer.colfile.copy()\n", " \n", - " cf_friedel_pairs_strong.addcolumn(indexer.ga.copy(), 'labels')\n", - " cf_friedel_pairs_strong.addcolumn(np.zeros(cf_friedel_pairs_strong.nrows), 'drlv2')\n", + " cf_indexed.addcolumn(indexer.ga.copy(), 'labels')\n", + " cf_indexed.addcolumn(np.zeros(cf_indexed.nrows), 'drlv2')\n", "\n", " for v in 'xyz':\n", " cf_3d.parameters.stepsizes[f't_{v}'] = 0.1\n", @@ -843,14 +864,15 @@ " for i in range(len(indexer.ubis)):\n", " grains = [ImageD11.grain.grain(indexer.ubis[i].copy() ),]\n", " cfit = ImageD11.columnfile.colfile_from_dict(\n", - " { t:cf_friedel_pairs_strong[t][indexer.ga==i+1] for t in cf_friedel_pairs_strong.titles} )\n", + " { t:cf_indexed[t][indexer.ga==i+1] for t in cf_indexed.titles} )\n", " if cfit.nrows == 0:\n", " continue\n", " fitted = ImageD11.grid_index_parallel.domap( cf_3d.parameters,\n", " cfit,\n", " grains,\n", " gridpars )\n", - " fittedgrains.append( fitted[0] )\n", + " if len(fitted) > 0:\n", + " fittedgrains.append( fitted[0] )\n", " \n", " grains_filtered = [grain for grain in fittedgrains if float(grain.npks) > absolute_minpks]\n", " filtered_map_path = f'{sample}_{dataset}_nice_grains.map'\n", diff --git a/ImageD11/nbGui/TDXRD/2_3DXRD_index_grid.ipynb b/ImageD11/nbGui/TDXRD/1_index_grid.ipynb similarity index 90% rename from ImageD11/nbGui/TDXRD/2_3DXRD_index_grid.ipynb rename to ImageD11/nbGui/TDXRD/1_index_grid.ipynb index b55aad57..de305b87 100755 --- a/ImageD11/nbGui/TDXRD/2_3DXRD_index_grid.ipynb +++ b/ImageD11/nbGui/TDXRD/1_index_grid.ipynb @@ -1,5 +1,17 @@ { "cells": [ + { + "cell_type": "markdown", + "id": "9f197eab-b00a-415b-857f-78b679c52690", + "metadata": { + "tags": [] + }, + "source": [ + "# Jupyter notebook based on ImageD11 to process 3DXRD data\n", + "# Written by Haixing Fang, Jon Wright and James Ball\n", + "## Date: 17/02/2025" + ] + }, { "cell_type": "code", "execution_count": null, @@ -15,8 +27,75 @@ "os.environ['OPENBLAS_NUM_THREADS'] = '1'\n", "os.environ['MKL_NUM_THREADS'] = '1'\n", "\n", - "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())\n", - "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )" + "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9686b3bc-6618-4a1c-b440-2a8ebc3ab9de", + "metadata": { + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# this cell is tagged with 'parameters'\n", + "# to view the tag, select the cell, then find the settings gear icon (right or left sidebar) and look for Cell Tags\n", + "\n", + "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )\n", + "\n", + "# desination of H5 files\n", + "# replace below with e.g.:\n", + "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", + "\n", + "dset_path = ''\n", + "\n", + "phase_str = 'Fe'\n", + "\n", + "# path to parameters .json/.par\n", + "parfile = ''\n", + "\n", + "# peak filtration options\n", + "cf_strong_frac = 0.999\n", + "cf_strong_dsmax = 1.017\n", + "cf_strong_dstol = 0.025\n", + "\n", + "cf_strong_allrings_frac = 0.999\n", + "cf_strong_allrings_dstol = 0.025\n", + "\n", + "# indexing options\n", + "indexer_ds_tol = 0.025\n", + "rings_to_use = [0, 1, 3]\n", + "\n", + "# makemap options\n", + "symmetry = \"cubic\"\n", + "makemap_tol_seq = [0.02, 0.015, 0.01]\n", + "\n", + "gridpars = {\n", + " 'DSTOL' : 0.004,\n", + " 'RING1' : [1,0,],\n", + " 'RING2' : [0,],\n", + " 'NUL' : True,\n", + " 'FITPOS' : True,\n", + " 'tolangle' : 0.50,\n", + " 'toldist' : 100.,\n", + " 'NTHREAD' : 1 ,\n", + "}\n", + "\n", + "grid_xlim = 600 # um - extent away from rotation axis to search for grains\n", + "grid_ylim = 600\n", + "grid_zlim = 200\n", + "grid_step = 100 # step size of search grid, um\n", + "\n", + "# fraction of expected number of peaks to accept in Makemap output\n", + "frac = 0.85\n", + "\n", + "# find the spike\n", + "absolute_minpks = 56\n", + "\n", + "dset_prefix = 'ff'" ] }, { @@ -51,22 +130,6 @@ "from ImageD11.peakselect import select_ring_peaks_by_intensity" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "69964e34-6f94-4594-8ff7-1b32c0324a4b", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# desination of H5 files\n", - "# replace below with e.g.:\n", - "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", - "\n", - "dset_path = ''" - ] - }, { "cell_type": "code", "execution_count": null, @@ -82,11 +145,25 @@ "\n", "sample = ds.sample\n", "dataset = ds.dset\n", + "rawdata_path = ds.dataroot\n", + "processed_data_root_dir = ds.analysisroot\n", "\n", "print(ds)\n", "print(ds.shape)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6bbd76b-aae4-42c6-b850-5165efc651b0", + "metadata": {}, + "outputs": [], + "source": [ + "# also set our parameters for indexing\n", + "ds.parfile = parfile\n", + "ds.save()" + ] + }, { "cell_type": "code", "execution_count": null, @@ -108,7 +185,6 @@ "outputs": [], "source": [ "# now let's select a phase to index from our parameters json\n", - "phase_str = 'Fe'\n", "\n", "ucell = ds.phases.unitcells[phase_str]\n", "\n", @@ -174,11 +250,6 @@ "# this indicates the fractional intensity cutoff we will select\n", "# if the blue line does not look elbow-shaped in the logscale plot, try changing the \"doplot\" parameter (the y scale of the logscale plot) until it does\n", "\n", - "\n", - "cf_strong_frac = 0.999\n", - "cf_strong_dsmax = 1.017\n", - "cf_strong_dstol = 0.025\n", - "\n", "cf_strong = select_ring_peaks_by_intensity(cf_3d, frac=cf_strong_frac, dsmax=cf_strong_dsmax, doplot=0.65, dstol=cf_strong_dstol)\n", "print(f\"Got {cf_strong.nrows} strong peaks for indexing\")" ] @@ -193,9 +264,6 @@ "# we will also export some additional strong peaks across all rings\n", "# this will be useful for grain refinement later (using makemap)\n", "\n", - "cf_strong_allrings_frac = 0.999\n", - "cf_strong_allrings_dstol = 0.025\n", - "\n", "cf_strong_allrings = select_ring_peaks_by_intensity(cf_3d, frac=cf_strong_allrings_frac, dsmax=cf_3d.ds.max(), doplot=0.8, dstol=cf_strong_allrings_dstol)\n", "print(f\"Got {cf_strong_allrings.nrows} strong peaks for makemap\")\n", "cf_strong_allrings_path = f'{sample}_{dataset}_3d_peaks_strong_all_rings.flt'\n", @@ -239,13 +307,11 @@ "source": [ "# specify our ImageD11 indexer with these peaks\n", "\n", - "indexer = ImageD11.indexing.indexer_from_colfile(cf_strong)\n", + "indexer = ImageD11.indexing.indexer_from_colfile_and_ucell(cf_strong, ucell)\n", "\n", "print(f\"Indexing {cf_strong.nrows} peaks\")\n", "\n", "# USER: set a tolerance in d-space (for assigning peaks to powder rings)\n", - "\n", - "indexer_ds_tol = 0.025\n", "indexer.ds_tol = indexer_ds_tol\n", "\n", "# change the log level so we can see what the ring assigments look like\n", @@ -297,8 +363,6 @@ "# now we need to decide which rings to use in the grid index\n", "# typically, 3-4 low multiplicity rings are good\n", "\n", - "rings_to_use = [0, 1, 3]\n", - "\n", "mask = np.zeros(cf_strong.nrows, dtype=bool)\n", "\n", "for ring in rings_to_use:\n", @@ -356,9 +420,7 @@ }, "outputs": [], "source": [ - "omegas_sorted = np.sort(ds.omega)[0]\n", - "omega_step = np.round(np.diff(omegas_sorted).mean(), 3)\n", - "omega_slop = omega_step/2" + "omega_slop = ds.ostep/2" ] }, { @@ -399,7 +461,6 @@ "# choose the fraction of the number of peaks expected - this should be around 0.9 if you had a good clean segementation\n", "# if you suspect you are missing peaks in your data, decrease to around 0.6\n", "\n", - "frac = 0.85\n", "minpeaks = int(np.round(peaks_expected * frac, 2))\n", "minpeaks" ] @@ -448,35 +509,17 @@ "source": [ "from ImageD11.grid_index_parallel import grid_index_parallel\n", "\n", - "symmetry = \"cubic\"\n", + "gridpars['COSTOL'] = np.cos(np.radians(90 - ds.ostep))\n", + "gridpars['NPROC'] = nproc\n", + "gridpars['NPKS'] = minpeaks\n", + "gridpars['OMEGAFLOAT'] = omega_slop\n", + "gridpars['TOLSEQ'] = makemap_tol_seq\n", + "gridpars['SYMMETRY'] = symmetry\n", "\n", - "makemap_tol_seq = [0.02, 0.015, 0.01]\n", - "\n", - "gridpars = {\n", - " 'DSTOL' : 0.004,\n", - " 'OMEGAFLOAT' : omega_slop,\n", - " 'COSTOL' : np.cos(np.radians(90 - ds.ostep)),\n", - " 'NPKS' : int(minpeaks),\n", - " 'TOLSEQ' : makemap_tol_seq,\n", - " 'SYMMETRY' : symmetry,\n", - " 'RING1' : [1,0,],\n", - " 'RING2' : [0,],\n", - " 'NUL' : True,\n", - " 'FITPOS' : True,\n", - " 'tolangle' : 0.50,\n", - " 'toldist' : 100.,\n", - " 'NPROC' : nproc, # guess from cpu_count\n", - " 'NTHREAD' : 1 ,\n", - " }\n", - " \n", - "# grid to search\n", - "translations = [(t_x, t_y, t_z) \n", - " for t_x in range(-600, 601, 100)\n", - " for t_y in range(-600, 601, 100) \n", - " for t_z in range(-600, 601, 100) ]\n", - "# Cylinder: \n", - "# translations = [( x,y,z) for (x,y,z) in translations if (x*x+y*y)< 500*500 ]\n", - "#\n", + "translations = [(t_x, t_y, t_z) # grid to search\n", + " for t_x in range(-grid_xlim, grid_xlim+1, grid_step)\n", + " for t_y in range(-grid_ylim, grid_ylim+1, grid_step) \n", + " for t_z in range(-grid_zlim, grid_zlim+1, grid_step) ]\n", "\n", "import random\n", "random.seed(42) # reproducible\n", @@ -556,14 +599,22 @@ "source": [ "# run makemap against the selected grid peaks\n", "\n", - "symmetry = \"cubic\"\n", - "\n", "new_map_path = f'alltmp.map.new'\n", "new_grid_peaks_path = f'{sample}_{dataset}_3d_peaks_grid.flt.new'\n", "\n", "makemap_output = !makemap.py -p {oldparfile} -u {map_path} -U {new_map_path} -f {grid_peaks_path} -s {symmetry} -t {makemap_tol_seq[-1]} --omega_slop={omega_slop} --no_sort" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ace88c5-a7ae-4a90-94b1-1f27965fd1cb", + "metadata": {}, + "outputs": [], + "source": [ + "utils.plot_grain_histograms(new_grid_peaks_path, new_map_path, oldparfile, omega_slop, tol=makemap_tol_seq[-1])" + ] + }, { "cell_type": "code", "execution_count": null, @@ -621,19 +672,6 @@ "plt.show()" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c847bd2-62e5-442b-a580-1b585407cde8", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# find the spike\n", - "absolute_minpks = 56" - ] - }, { "cell_type": "code", "execution_count": null, @@ -701,8 +739,6 @@ "source": [ "# run makemap again against all peaks\n", "\n", - "symmetry = \"cubic\"\n", - "\n", "new_filtered_map_path = f'{sample}_{dataset}_nice_grains.map.new'\n", "new_cf_3d_path = cf_3d_path + '.new'\n", "\n", @@ -796,6 +832,16 @@ "len(grains_final)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c1cc664-b29d-4b8e-9159-1d31e31fcd47", + "metadata": {}, + "outputs": [], + "source": [ + "utils.plot_grain_histograms(new_cf_3d_path, new_filtered_map_path, oldparfile, omega_slop, tol=makemap_tol_seq[-1])" + ] + }, { "cell_type": "code", "execution_count": null, @@ -859,18 +905,6 @@ " os.remove(path)" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "22576f0f-539a-4169-8638-b5021bad6790", - "metadata": {}, - "outputs": [], - "source": [ - "# change to 0 to allow all cells to be run automatically\n", - "if 1:\n", - " raise ValueError(\"Hello!\")" - ] - }, { "cell_type": "code", "execution_count": null, @@ -878,26 +912,27 @@ "metadata": {}, "outputs": [], "source": [ - "# Now that we are happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", + "# Now that we're happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", "# by default this will do all samples in sample_list, all datasets with a prefix of dset_prefix\n", "# you can add samples and datasets to skip in skips_dict\n", "\n", + "# you can optionally skip samples\n", + "# skips_dict = {\n", + "# \"FeAu_0p5_tR\": [\"ff6\",]\n", + "# }\n", + "# otherwise by default skip nothing:\n", "skips_dict = {\n", - " \"FeAu_0p5_tR\": []\n", + " ds.sample: []\n", "}\n", "\n", - "# USER: Change this prefix to match the naming convention of your datasets\n", - "# e.g if your slices are formatted like [\"ff_z0\", \"ff_z1\", \"ff_z2\"] etc, then the prefix could be \"ff\" or \"ff_z\"\n", + "sample_list = [ds.sample, ]\n", "\n", - "dset_prefix = \"ff\"\n", + "samples_dict = utils.find_datasets_to_process(rawdata_path, skips_dict, dset_prefix, sample_list)\n", "\n", - "sample_list = [\"FeAu_0p5_tR\"]\n", - " \n", - "samples_dict = utils.find_datasets_to_process(ds.dataroot, skips_dict, dset_prefix, sample_list)\n", "print(samples_dict)\n", - "\n", - "# manual override example:\n", - "# samples_dict = {\"FeAu_0p5_tR\": [\"ff1\", \"ff2\"]}" + " \n", + "# manual override:\n", + "# samples_dict = {\"FeAu_0p5_tR_nscope\": [\"top_100um\", \"top_150um\"]}" ] }, { @@ -927,7 +962,8 @@ " if phase_str in hin.keys():\n", " print(f\"Already have grains for {dataset} in sample {sample}, skipping\")\n", " continue\n", - " \n", + " ds.parfile = parfile\n", + " ds.save()\n", " ds.phases = ds.get_phases_from_disk()\n", " ucell = ds.phases.unitcells[phase_str]\n", " \n", @@ -960,9 +996,7 @@ " grid_peaks_path = f'{sample}_{dataset}_3d_peaks_grid.flt'\n", " peaks_to_export.writefile(grid_peaks_path)\n", " \n", - " omegas_sorted = np.sort(ds.omega)[0]\n", - " omega_step = np.round(np.diff(omegas_sorted).mean(), 3)\n", - " omega_slop = omega_step/2\n", + " omega_slop = ds.ostep/2\n", " \n", " print('Launching grid index')\n", " grid_index_parallel(grid_peaks_path, oldparfile, tmp_output_path, gridpars, translations)\n", diff --git a/ImageD11/nbGui/TDXRD/2_merge_slices.ipynb b/ImageD11/nbGui/TDXRD/2_merge_slices.ipynb new file mode 100755 index 00000000..7aeb9e31 --- /dev/null +++ b/ImageD11/nbGui/TDXRD/2_merge_slices.ipynb @@ -0,0 +1,1160 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d7a0cf0a", + "metadata": { + "papermill": { + "duration": 0.006454, + "end_time": "2025-02-17T13:42:50.829319", + "exception": false, + "start_time": "2025-02-17T13:42:50.822865", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# Jupyter notebook based on ImageD11 to process scanning 3DXRD data\n", + "# Written by Haixing Fang, Jon Wright and James Ball\n", + "## Date: 21/02/2024" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee3ddc28", + "metadata": { + "papermill": { + "duration": 0.017851, + "end_time": "2025-02-17T13:42:50.853074", + "exception": false, + "start_time": "2025-02-17T13:42:50.835223", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f372b7a7", + "metadata": { + "papermill": { + "duration": 0.344849, + "end_time": "2025-02-17T13:42:51.201659", + "exception": false, + "start_time": "2025-02-17T13:42:50.856810", + "status": "completed" + }, + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# this cell is tagged with 'parameters'\n", + "# to view the tag, select the cell, then find the settings gear icon (right or left sidebar) and look for Cell Tags\n", + "\n", + "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )\n", + "\n", + "dset_path = ''\n", + "\n", + "phase_str = 'Fe'\n", + "\n", + "z_translation_motor = \"samtz\"\n", + "\n", + "dset_prefix = \"ff\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d835bf9", + "metadata": { + "papermill": { + "duration": 1.245379, + "end_time": "2025-02-17T13:42:52.469521", + "exception": false, + "start_time": "2025-02-17T13:42:51.224142", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# import functions we need\n", + "\n", + "import os, glob, pprint\n", + "import numpy as np\n", + "import h5py\n", + "from tqdm.notebook import tqdm\n", + "\n", + "import matplotlib\n", + "%matplotlib widget\n", + "from matplotlib import pyplot as plt\n", + "\n", + "# import utils\n", + "from ImageD11.nbGui import nb_utils as utils\n", + "\n", + "import ImageD11.grain\n", + "import ImageD11.indexing\n", + "import ImageD11.columnfile\n", + "from ImageD11.sinograms import properties, dataset\n", + "\n", + "from ImageD11.sym_u import find_uniq_u, getgroup, cubic\n", + "from xfab.symmetry import Umis, ROTATIONS\n", + "from scipy.spatial.transform import Rotation as R\n", + "import networkx as nx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee0bca2c", + "metadata": { + "papermill": { + "duration": 0.029215, + "end_time": "2025-02-17T13:42:52.509173", + "exception": false, + "start_time": "2025-02-17T13:42:52.479958", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# desination of H5 files\n", + "# replace below with e.g.:\n", + "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", + "\n", + "# load the dataset from file\n", + "\n", + "ds = ImageD11.sinograms.dataset.load(dset_path)\n", + "\n", + "print(ds)\n", + "print(ds.shape)\n", + "\n", + "rawdata_path = ds.dataroot\n", + "processed_data_root_dir = ds.analysisroot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "613cc3a3", + "metadata": { + "papermill": { + "duration": 0.012703, + "end_time": "2025-02-17T13:42:52.527052", + "exception": false, + "start_time": "2025-02-17T13:42:52.514349", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ds.phases = ds.get_phases_from_disk()\n", + "ds.phases.unitcells" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9169d34d", + "metadata": { + "papermill": { + "duration": 0.011312, + "end_time": "2025-02-17T13:42:52.541569", + "exception": false, + "start_time": "2025-02-17T13:42:52.530257", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# now let's select a phase to index from our parameters json\n", + "\n", + "ucell = ds.phases.unitcells[phase_str]\n", + "\n", + "print(ucell.lattice_parameters, ucell.spacegroup)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e3b5d68d", + "metadata": { + "papermill": { + "duration": 0.012904, + "end_time": "2025-02-17T13:42:52.558725", + "exception": false, + "start_time": "2025-02-17T13:42:52.545821", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Now that we're happy with our indexing parameters, we can run the below cell to do this in bulk for many samples/datasets\n", + "# by default this will do all samples in sample_list, all datasets with a prefix of dset_prefix\n", + "# you can add samples and datasets to skip in skips_dict\n", + "\n", + "# you can optionally skip samples\n", + "# skips_dict = {\n", + "# \"FeAu_0p5_tR\": [\"ff6\",]\n", + "# }\n", + "# otherwise by default skip nothing:\n", + "skips_dict = {\n", + " ds.sample: []\n", + "}\n", + "\n", + "sample_list = [ds.sample, ]\n", + "\n", + "samples_dict = utils.find_datasets_to_process(rawdata_path, skips_dict, dset_prefix, sample_list)\n", + "\n", + "print(samples_dict)\n", + " \n", + "# manual override:\n", + "# samples_dict = {\"FeAu_0p5_tR_nscope\": [\"top_100um\", \"top_150um\"]}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87b45496", + "metadata": { + "papermill": { + "duration": 0.070269, + "end_time": "2025-02-17T13:42:52.632738", + "exception": false, + "start_time": "2025-02-17T13:42:52.562469", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# load all 3DXRD datasets for this sample\n", + "\n", + "from collections import OrderedDict\n", + "\n", + "# just take first sample for now\n", + "\n", + "sample = sample_list[0]\n", + "datasets = samples_dict[sample]\n", + "ds_dict = OrderedDict()\n", + "\n", + "# try to sort datasets alphabetically\n", + "\n", + "datasets_sorted = sorted(datasets)\n", + "\n", + "for dataset in datasets_sorted:\n", + " dset_path = os.path.join(processed_data_root_dir, sample, f\"{sample}_{dataset}\", f\"{sample}_{dataset}_dataset.h5\")\n", + " ds = ImageD11.sinograms.dataset.load(dset_path)\n", + " print(f\"I have a DataSet {ds.dset} in sample {ds.sample}\")\n", + " ds_dict[dataset] = ds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4edac262", + "metadata": { + "papermill": { + "duration": 0.020151, + "end_time": "2025-02-17T13:42:52.658280", + "exception": false, + "start_time": "2025-02-17T13:42:52.638129", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# populate z translations\n", + "\n", + "for ds in ds_dict.values():\n", + " with h5py.File(ds.masterfile, 'r' ) as hin:\n", + " this_z_trans_value = hin[\"1.1/instrument/positioners\"][z_translation_motor][()]\n", + " ds.zpos = this_z_trans_value # this is in microns for samtz" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b028319", + "metadata": { + "papermill": { + "duration": 0.614724, + "end_time": "2025-02-17T13:42:53.276467", + "exception": false, + "start_time": "2025-02-17T13:42:52.661743", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# load grains for each dataset and tie them to the dataset objects\n", + "for ds in ds_dict.values():\n", + " ds.grains = ds.get_grains_from_disk(phase_str)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "113c2fb3", + "metadata": { + "papermill": { + "duration": 0.013082, + "end_time": "2025-02-17T13:42:53.298262", + "exception": false, + "start_time": "2025-02-17T13:42:53.285180", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# get positions within the sample (set middle slice as zero position)\n", + "\n", + "middle_ds = list(ds_dict.values())[len(ds_dict.values())//2]\n", + "middle_pos = middle_ds.zpos\n", + "\n", + "for ds in ds_dict.values():\n", + " # adjust so that the first letterbox (lowest z so highest on the sample) has the highest value of zpos\n", + " ds.zpos_sample = middle_pos - ds.zpos\n", + " print(ds.zpos, ds.zpos_sample)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9b40b2c8", + "metadata": { + "papermill": { + "duration": 0.013815, + "end_time": "2025-02-17T13:42:53.315512", + "exception": false, + "start_time": "2025-02-17T13:42:53.301697", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "for inc, ds in enumerate(ds_dict.values()):\n", + " for gid, grain in enumerate(ds.grains):\n", + " grain.pos_sample = grain.translation + np.array([0., 0., ds.zpos_sample * 1000])\n", + " grain.dataset = ds.dsname\n", + " grain.z_slice = inc\n", + " grain.gid = gid\n", + " grain.ref_unitcell = ucell\n", + " grain.mean_int = float(grain.intensity_info.split('mean = ')[1].split(' ,')[0])\n", + " \n", + " utils.get_rgbs_for_grains(ds.grains)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9186c7c9", + "metadata": { + "papermill": { + "duration": 0.010577, + "end_time": "2025-02-17T13:42:53.330899", + "exception": false, + "start_time": "2025-02-17T13:42:53.320322", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "all_grains = []\n", + "for ds in ds_dict.values():\n", + " all_grains.extend(ds.grains)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db6232c1", + "metadata": { + "papermill": { + "duration": 0.011207, + "end_time": "2025-02-17T13:42:53.345624", + "exception": false, + "start_time": "2025-02-17T13:42:53.334417", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "print(all_grains[0].pos_sample, all_grains[0].translation)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b26bb116", + "metadata": { + "papermill": { + "duration": 0.231902, + "end_time": "2025-02-17T13:42:53.581600", + "exception": false, + "start_time": "2025-02-17T13:42:53.349698", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "centre_plot = False\n", + "\n", + "fig = plt.figure(figsize=(12, 12))\n", + "ax = fig.add_subplot(projection='3d')\n", + "\n", + "import matplotlib.cm as cm\n", + "\n", + "colors = cm.rainbow(np.linspace(0, 1, len(list(ds_dict.values()))))\n", + "\n", + "for ds in ds_dict.values():\n", + " xx = [grain.pos_sample[0] for grain in ds.grains]\n", + " yy = [grain.pos_sample[1] for grain in ds.grains]\n", + " zz = [grain.pos_sample[2] for grain in ds.grains]\n", + " scatterplot = ax.scatter(xx, yy, zz, c=[grain.rgb_z for grain in ds.grains], s=[0.1*np.power(g.mean_int, 2/3) for g in ds.grains], label=ds.grains[0].z_slice)\n", + "\n", + "ax.set_aspect('equal')\n", + "ax.set_title(\"Grains coloured by ipf-z\")\n", + "ax.set_xlabel(\"x\")\n", + "ax.set_ylabel(\"y\")\n", + "ax.set_zlabel(\"z\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9c36a4bc-2442-4416-a749-db4503f89161", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "centre_plot = False\n", + "\n", + "fig = plt.figure(figsize=(12, 12))\n", + "ax = fig.add_subplot(projection='3d')\n", + "\n", + "import matplotlib.cm as cm\n", + "\n", + "colors = cm.rainbow(np.linspace(0, 1, len(list(ds_dict.values()))))\n", + "\n", + "for ds in ds_dict.values():\n", + " xx = [grain.pos_sample[0] for grain in ds.grains]\n", + " yy = [grain.pos_sample[1] for grain in ds.grains]\n", + " zz = [grain.pos_sample[2] for grain in ds.grains]\n", + " # col = [len(grain.peaks_3d) for grain in ds.grains]\n", + " # col = [grain.z_slice for grain in ds.grains]\n", + " scatterplot = ax.scatter(xx, yy, zz, c=colors[ds.grains[0].z_slice], label=ds.grains[0].z_slice)\n", + "ax.set_aspect('equal')\n", + "# plt.colorbar(scatterplot)\n", + "ax.set_title(\"Grains coloured by z slice\")\n", + "ax.set_xlabel(\"x\")\n", + "ax.set_ylabel(\"y\")\n", + "ax.set_zlabel(\"z\")\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3a5c12d1-7838-4973-91a4-37df07ba877f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# grain deduplication philosophy\n", + "# create a Graph with networkx - each grain is a node on the graph\n", + "# build an adjacency matrix - every grain vs every other grain\n", + "# vectors on the graph are drawn based on whether two grains are considered to match\n", + "# then extract the connected components of the graph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee69756c-06f1-4e76-b843-520d80b96256", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "len(all_grains)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bdc2814a-0459-4868-bd45-6f0309a8e6e0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "crystal_system_number = 7 # cubic\n", + "\n", + "def misorien_deg(U1, U2, crystal_system_number=7):\n", + " return Umis(U1, U2, crystal_system_number)[:, 1].min() # 7 == cubic\n", + "\n", + "# euclidean distance function\n", + "def eudis(v1, v2):\n", + " return np.linalg.norm(v1-v2)\n", + "\n", + "def are_grains_duplicate(grain_a, grain_b, distance_tolerance=25, angle_tolerance=2):\n", + " # are they the same grain?\n", + " if grain_a is grain_b:\n", + " return False\n", + " # # are they from the same slice?\n", + " # if grain_a.z_slice == grain_b.z_slice:\n", + " # return False\n", + " # now check their euclidean distance\n", + " translation = eudis(grain_a.pos_sample, grain_b.pos_sample)\n", + " if translation > distance_tolerance:\n", + " return False\n", + " misorien = misorien_deg(grain_a.U, grain_b.U)\n", + " if misorien > angle_tolerance:\n", + " return False\n", + " # if we got here, we have a misorientation match\n", + " return True" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "192d9d3d-d40a-46f1-b290-eac40af208ef", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "adjacency_matrix = np.zeros((len(all_grains), len(all_grains))).astype(bool)\n", + "inds = np.array(np.triu_indices(adjacency_matrix.shape[0])).T # upper triangular indices to the adjacency matrix\n", + "\n", + "distance_tolerance_for_merging_grains = 150\n", + "angular_tolerance_for_merging_grains = 0.5\n", + "\n", + "for ind in tqdm(inds):\n", + " i_a, i_b = ind\n", + " grain_a = all_grains[i_a]\n", + " grain_b = all_grains[i_b]\n", + " if are_grains_duplicate(grain_a, grain_b, distance_tolerance_for_merging_grains, angular_tolerance_for_merging_grains):\n", + " adjacency_matrix[*ind] = 1\n", + "\n", + "print(np.sum(adjacency_matrix))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2b51f4bf-a6db-46c8-b358-ffa3185ee051", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# build networkx graph\n", + "\n", + "G = nx.from_numpy_array(adjacency_matrix)\n", + "components = list(nx.connected_components(G))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c21b848-f4c0-419b-9969-084f026a6e92", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def merge_grains(grains_to_merge):\n", + " grain_positions = np.array([g.pos_sample for g in grains_to_merge])\n", + " \n", + " # take first grain in grains_to_merge\n", + " # take the fundamental zone of that grain\n", + " # move all other grains into the same fundamental zone\n", + " first_grain = grains_to_merge[0]\n", + " umats_fz = []\n", + " umats_fz.append(first_grain.U)\n", + " for g in grains_to_merge[1:]:\n", + " umis_out = Umis(g.U, first_grain.U, 7)\n", + " rot_operator_idx = np.argmin(umis_out[:, 1])\n", + " rot_operator = ROTATIONS[7][rot_operator_idx]\n", + " second_grain_in_fz = g.U @ rot_operator.T\n", + " umats_fz.append(second_grain_in_fz)\n", + " \n", + " grain_umats = np.array(umats_fz)\n", + " # find_uniq_u has corner cases!\n", + " # grain_umats = np.array([find_uniq_u(g.U, getgroup( 'cubic' )()) for g in grains_to_merge])\n", + " grain_as = np.array([np.linalg.inv(g.B) for g in grains_to_merge])\n", + " grain_volumes = np.array([g.mean_int for g in grains_to_merge])\n", + " vol_weighted_umat = R.from_matrix(grain_umats).mean(weights=grain_volumes).as_matrix()\n", + " vol_weighted_position = np.average(grain_positions, weights=grain_volumes, axis=0)\n", + " vol_weighted_amat = np.average(grain_as, weights=grain_volumes, axis=0)\n", + " vol_weighted_bmat = np.linalg.inv(vol_weighted_amat)\n", + " vol_weighted_ubi = np.linalg.inv(vol_weighted_umat.dot(vol_weighted_bmat))\n", + " new_grain = ImageD11.grain.grain(vol_weighted_ubi)\n", + " new_grain.pos_sample = vol_weighted_position\n", + " new_grain.names = [g.name for g in grains_to_merge]\n", + " new_grain.mean_int = np.sum(grain_volumes)\n", + " \n", + " # new grain should be close to first grain\n", + " assert eudis(new_grain.pos_sample, grains_to_merge[0].pos_sample) < 200, eudis(new_grain.pos_sample, grains_to_merge[0].pos_sample)\n", + " # print(misorien_deg(new_grain.U, grains_to_merge[0].U))\n", + " assert misorien_deg(new_grain.U, grains_to_merge[0].U) < 1, misorien_deg(new_grain.U, grains_to_merge[0].U)\n", + " \n", + " return new_grain" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5a0dc60-ea9c-4f92-b43d-e4231512cfff", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# build list of merged grains\n", + "merged_grains = []\n", + "# comp is a list of dictionaries\n", + "for comp in tqdm(list(nx.connected_components(G))):\n", + " # list of grain IDs\n", + " cl = list(comp)\n", + " # list of grains\n", + " grains_here = [all_grains[inc] for inc in cl]\n", + " if len(grains_here) == 1:\n", + " merged_grains.append(grains_here[0])\n", + " else:\n", + " gnew = merge_grains(grains_here)\n", + " merged_grains.append(gnew)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d2952c83-dac9-4dd9-ae25-8e05e533cea8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "for g in merged_grains:\n", + " g.ref_unitcell = ucell\n", + "\n", + "utils.get_rgbs_for_grains(merged_grains)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6da4af2-ba72-413a-af8e-a8c3ebfcffbc", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "centre_plot = False\n", + "\n", + "fig = plt.figure(figsize=(12, 12))\n", + "ax = fig.add_subplot(projection='3d')\n", + "\n", + "xx = [grain.pos_sample[0] for grain in merged_grains]\n", + "yy = [grain.pos_sample[1] for grain in merged_grains]\n", + "zz = [grain.pos_sample[2] for grain in merged_grains]\n", + "# colour by if we have a merge or not\n", + "# c = [colors[adjacency_matrix[:, inc].sum()*5] for inc, grain in enumerate(all_grains)]\n", + "c = [grain.rgb_z for grain in merged_grains]\n", + "scatterplot = ax.scatter(xx, yy, zz, c=c, s=[0.1*np.power(g.mean_int, 2/3) for g in merged_grains])\n", + "# ax.set_xlim(-200,200)\n", + "# ax.set_ylim(-200,200)\n", + "# ax.set_zlim(-100,100)\n", + "ax.set_aspect('equal')\n", + "# plt.colorbar(scatterplot)\n", + "ax.set_title(\"Merged Grains\")\n", + "ax.set_xlabel(\"x\")\n", + "ax.set_ylabel(\"y\")\n", + "ax.set_zlabel(\"z\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (main)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + }, + "papermill": { + "default_parameters": {}, + "duration": 23.994739, + "end_time": "2025-02-17T13:43:13.919619", + "environment_variables": {}, + "exception": null, + "input_path": "../ImageD11/nbGui/TDXRD/2_merge_slices.ipynb", + "output_path": "/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/PROCESSED_DATA/20250127_JADB/friedel/nb_out/2_merge_slices_out.ipynb", + "parameters": { + "PYTHONPATH": "../", + "dset_path": "/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/PROCESSED_DATA/20250127_JADB/friedel/FeAu_0p5_tR/FeAu_0p5_tR_ff1/FeAu_0p5_tR_ff1_dataset.h5", + "dset_prefix": "ff", + "phase_str": "Fe", + "z_translation_motor": "samtz" + }, + "start_time": "2025-02-17T13:42:49.924880", + "version": "2.6.0" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "082633e67fad4a8a88d2039503e3df62": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_current_action": "", + "_dom_classes": [], + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "ToolbarModel", + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "ToolbarView", + "button_style": "", + "collapsed": true, + "layout": "IPY_MODEL_cba0b97ca2f74cf6857263ca8fd166c3", + "orientation": "vertical", + "tabbable": null, + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ], + "tooltip": null + } + }, + "219b70b5dd864ed5873e6670dc71ba36": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_cursor": "pointer", + "_data_url": "", + "_dom_classes": [], + "_figure_label": "Figure", + "_image_mode": "full", + "_message": "", + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "MPLCanvasModel", + "_rubberband_height": 0, + "_rubberband_width": 0, + "_rubberband_x": 0, + "_rubberband_y": 0, + "_size": [ + 640, + 480 + ], + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "MPLCanvasView", + "capture_scroll": false, + "footer_visible": true, + "header_visible": true, + "layout": "IPY_MODEL_c882b1d970284356908b0eb39c0bac07", + "pan_zoom_throttle": 33, + "resizable": true, + "tabbable": null, + "toolbar": "IPY_MODEL_2c1f101964a34f55b9b2a65536320b35", + "toolbar_position": "left", + "toolbar_visible": "fade-in-fade-out", + "tooltip": null + } + }, + "2c1f101964a34f55b9b2a65536320b35": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "ToolbarModel", + "state": { + "_current_action": "", + "_dom_classes": [], + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "ToolbarModel", + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "ToolbarView", + "button_style": "", + "collapsed": true, + "layout": "IPY_MODEL_7b30e545607f482480b5830bf9fd9e97", + "orientation": "vertical", + "tabbable": null, + "toolitems": [ + [ + "Home", + "Reset original view", + "home", + "home" + ], + [ + "Back", + "Back to previous view", + "arrow-left", + "back" + ], + [ + "Forward", + "Forward to next view", + "arrow-right", + "forward" + ], + [ + "Pan", + "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", + "arrows", + "pan" + ], + [ + "Zoom", + "Zoom to rectangle\nx/y fixes axis", + "square-o", + "zoom" + ], + [ + "Download", + "Download plot", + "floppy-o", + "save_figure" + ] + ], + "tooltip": null + } + }, + "3a2b7132a3b44bee8fb193824190dd45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f13e616b3e54aa3bcf6c2ac3d321e9b": { + "model_module": "jupyter-matplotlib", + "model_module_version": "^0.11", + "model_name": "MPLCanvasModel", + "state": { + "_cursor": "pointer", + "_data_url": "", + "_dom_classes": [], + "_figure_label": "Figure", + "_image_mode": "full", + "_message": "", + "_model_module": "jupyter-matplotlib", + "_model_module_version": "^0.11", + "_model_name": "MPLCanvasModel", + "_rubberband_height": 0, + "_rubberband_width": 0, + "_rubberband_x": 0, + "_rubberband_y": 0, + "_size": [ + 1200, + 1200 + ], + "_view_count": null, + "_view_module": "jupyter-matplotlib", + "_view_module_version": "^0.11", + "_view_name": "MPLCanvasView", + "capture_scroll": false, + "footer_visible": true, + "header_visible": true, + "layout": "IPY_MODEL_3a2b7132a3b44bee8fb193824190dd45", + "pan_zoom_throttle": 33, + "resizable": true, + "tabbable": null, + "toolbar": "IPY_MODEL_082633e67fad4a8a88d2039503e3df62", + "toolbar_position": "left", + "toolbar_visible": "fade-in-fade-out", + "tooltip": null + } + }, + "7b30e545607f482480b5830bf9fd9e97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c882b1d970284356908b0eb39c0bac07": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cba0b97ca2f74cf6857263ca8fd166c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ImageD11/nbGui/TDXRD/4_3DXRD_merge_slices.ipynb b/ImageD11/nbGui/TDXRD/4_3DXRD_merge_slices.ipynb deleted file mode 100755 index cb540a34..00000000 --- a/ImageD11/nbGui/TDXRD/4_3DXRD_merge_slices.ipynb +++ /dev/null @@ -1,449 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Jupyter notebook based on ImageD11 to process scanning 3DXRD data\n", - "# Written by Haixing Fang, Jon Wright and James Ball\n", - "## Date: 21/02/2024" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "exec(open('/data/id11/nanoscope/install_ImageD11_from_git.py').read())\n", - "PYTHONPATH = setup_ImageD11_from_git( ) # ( os.path.join( os.environ['HOME'],'Code'), 'ImageD11_git' )" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# import functions we need\n", - "\n", - "import os, glob, pprint\n", - "import numpy as np\n", - "import h5py\n", - "from tqdm.notebook import tqdm\n", - "\n", - "import matplotlib\n", - "%matplotlib widget\n", - "from matplotlib import pyplot as plt\n", - "\n", - "# import utils\n", - "from ImageD11.nbGui import nb_utils as utils\n", - "\n", - "import ImageD11.grain\n", - "import ImageD11.indexing\n", - "import ImageD11.columnfile\n", - "from ImageD11.sinograms import properties, dataset\n", - "\n", - "from ImageD11.blobcorrector import eiger_spatial" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# desination of H5 files\n", - "# replace below with e.g.:\n", - "# dset_path = '/data/visitor/expt1234/20240101/PROCESSED_DATA/sample/dataset/sample_dataset.h5'\n", - "\n", - "dset_path = ''\n", - "\n", - "# load the dataset from file\n", - "\n", - "ds = ImageD11.sinograms.dataset.load(dset_path)\n", - "\n", - "print(ds)\n", - "print(ds.shape)\n", - "\n", - "rawdata_path = ds.dataroot\n", - "processed_data_root_dir = ds.analysisroot" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ds.phases = ds.get_phases_from_disk()\n", - "ds.phases.unitcells" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# now let's select a phase to index from our parameters json\n", - "phase_str = 'Fe'\n", - "\n", - "ucell = ds.phases.unitcells[phase_str]\n", - "\n", - "print(ucell.lattice_parameters, ucell.spacegroup)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# USER: pick a sample you want to import\n", - "\n", - "skips_dict = {\n", - " ds.sample: []\n", - "}\n", - "\n", - "# USER: Change this prefix to match the naming convention of your datasets\n", - "# e.g if your slices are formatted like [\"ff_z0\", \"ff_z1\", \"ff_z2\"] etc, then the prefix could be \"ff\" or \"ff_z\"\n", - "\n", - "dset_prefix = \"ff\"\n", - "\n", - "sample_list = [ds.sample]\n", - "\n", - "samples_dict = utils.find_datasets_to_process(rawdata_path, skips_dict, dset_prefix, sample_list)\n", - "\n", - "print(samples_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# load all 3DXRD datasets for this sample\n", - "\n", - "from collections import OrderedDict\n", - "\n", - "# just take first sample for now\n", - "\n", - "sample = sample_list[0]\n", - "datasets = samples_dict[sample]\n", - "ds_dict = OrderedDict()\n", - "\n", - "# try to sort datasets alphabetically\n", - "\n", - "datasets_sorted = sorted(datasets)\n", - "\n", - "for dataset in datasets_sorted:\n", - " dset_path = os.path.join(processed_data_root_dir, sample, f\"{sample}_{dataset}\", f\"{sample}_{dataset}_dataset.h5\")\n", - " ds = ImageD11.sinograms.dataset.load(dset_path)\n", - " print(f\"I have a DataSet {ds.dset} in sample {ds.sample}\")\n", - " ds_dict[dataset] = ds" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# populate z translations\n", - "\n", - "z_translation_motor = \"samtz\"\n", - "\n", - "for ds in ds_dict.values():\n", - " with h5py.File(ds.masterfile, 'r' ) as hin:\n", - " this_z_trans_value = hin[\"1.1/instrument/positioners\"][z_translation_motor][()]\n", - " ds.zpos = this_z_trans_value # this is in microns for samtz" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# load grains for each dataset and tie them to the dataset objects\n", - "for ds in ds_dict.values():\n", - " ds.grains = ds.get_grains_from_disk(phase_str)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# get positions within the sample (set middle slice as zero position)\n", - "\n", - "middle_ds = list(ds_dict.values())[len(ds_dict.values())//2]\n", - "middle_pos = middle_ds.zpos\n", - "\n", - "for ds in ds_dict.values():\n", - " # adjust so that the first letterbox (lowest z so highest on the sample) has the highest value of zpos\n", - " ds.zpos_sample = middle_pos - ds.zpos\n", - " print(ds.zpos, ds.zpos_sample)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "for inc, ds in enumerate(ds_dict.values()):\n", - " for gid, grain in enumerate(ds.grains):\n", - " grain.pos_sample = grain.translation + np.array([0., 0., ds.zpos_sample * 1000])\n", - " grain.dataset = ds.dsname\n", - " grain.z_slice = inc\n", - " grain.gid = gid" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "all_grains = []\n", - "for ds in ds_dict.values():\n", - " all_grains.extend(ds.grains)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(all_grains[0].pos_sample, all_grains[0].translation)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "centre_plot = False\n", - "\n", - "fig = plt.figure(figsize=(12, 12))\n", - "ax = fig.add_subplot(projection='3d')\n", - "\n", - "import matplotlib.cm as cm\n", - "\n", - "colors = cm.rainbow(np.linspace(0, 1, len(list(ds_dict.values()))))\n", - "\n", - "for ds in ds_dict.values():\n", - " xx = [grain.pos_sample[0] for grain in ds.grains]\n", - " yy = [grain.pos_sample[1] for grain in ds.grains]\n", - " zz = [grain.pos_sample[2] for grain in ds.grains]\n", - " # col = [len(grain.peaks_3d) for grain in ds.grains]\n", - " # col = [grain.z_slice for grain in ds.grains]\n", - " scatterplot = ax.scatter(xx, yy, zz, c=colors[ds.grains[0].z_slice], label=ds.grains[0].z_slice)\n", - "ax.set_xlim(-200,200)\n", - "ax.set_ylim(-200,200)\n", - "ax.set_zlim(-100,100)\n", - "# plt.colorbar(scatterplot)\n", - "ax.set_title(\"Grains coloured by z slice\")\n", - "ax.set_xlabel(\"x\")\n", - "ax.set_ylabel(\"y\")\n", - "ax.set_zlabel(\"z\")\n", - "ax.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# now we can look for duplicate grains\n", - "# this is a very simple duplicate grain detector\n", - "\n", - "distance_tolerance = 25/2 # microns\n", - "angle_tolerance = 2 # degrees\n", - "\n", - "def eudis(v1, v2):\n", - " return np.linalg.norm(v1-v2)\n", - "\n", - "from xfab.symmetry import Umis\n", - "\n", - "# USER: Check the symmetry here\n", - "# crystal_system number must be one of 1: Triclinic, 2: Monoclinic, 3: Orthorhombic, 4: Tetragonal, 5: Trigonal, 6: Hexagonal, 7: Cubic\n", - "\n", - "crystal_system_number = 7 # cubic\n", - "\n", - "def misorien_deg(U1, U2):\n", - " return np.min(Umis(U1, U2, crystal_system_number), axis=0)[1] # 7 == cubic\n", - "\n", - "matches = []\n", - "\n", - "for grain_a in all_grains:\n", - " for grain_b in all_grains:\n", - " if grain_a.z_slice == grain_b.z_slice:\n", - " # grains are in the same slice, skip\n", - " continue\n", - " translation = eudis(grain_a.pos_sample, grain_b.pos_sample)\n", - " if translation < distance_tolerance:\n", - " # might have a match in translation, now check misorientation\n", - " misorien = misorien_deg(grain_a.U, grain_b.U)\n", - " if misorien < angle_tolerance:\n", - " print(f\"Found match! Grain A: {grain_a.z_slice}:{grain_a.gid} | Grain B: {grain_b.z_slice}:{grain_b.gid} | Distance: {translation:.0f} um | Angle: {misorien:.3f} deg\")\n", - " matches.append((grain_a, grain_b))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# how do we determine good choices of parameters?\n", - "# one way is to follow Louca and try a range of parameters and plot the results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def get_n_matches(dist_tol, ang_tol):\n", - " n_matches = 0\n", - " for grain_a in all_grains:\n", - " for grain_b in all_grains:\n", - " if grain_a.z_slice == grain_b.z_slice:\n", - " # grains are in the same slice, skip\n", - " continue\n", - " translation = eudis(grain_a.pos_sample, grain_b.pos_sample)\n", - " if translation < dist_tol:\n", - " # might have a match in translation, now check misorientation\n", - " misorien = misorien_deg(grain_a.U, grain_b.U)\n", - " if misorien < ang_tol:\n", - " n_matches += 1\n", - " return n_matches" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "dist_tols = [1, 2, 5, 10, 15, 20, 25]\n", - "ang_tols = [1, 2, 3, 4, 5]\n", - "\n", - "tol_check_results = {}\n", - "\n", - "print(\"dist_tol | ang_tol | n_matches\")\n", - "\n", - "for dist_tol in dist_tols:\n", - " for ang_tol in ang_tols:\n", - "\n", - " n_matches = get_n_matches(dist_tol, ang_tol)\n", - " tol_check_results[dist_tol, ang_tol] = n_matches\n", - " print(f\"{dist_tol} | {ang_tol} | {n_matches}\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "fig, ax = plt.subplots()\n", - "\n", - "for ang_tol in ang_tols:\n", - " n_matches_at_this_angle = []\n", - " for dist_tol in dist_tols:\n", - " n_matches_at_this_distance = tol_check_results[dist_tol, ang_tol]\n", - " n_matches_at_this_angle.append(n_matches_at_this_distance)\n", - " \n", - " ax.plot(dist_tols, n_matches_at_this_angle, label=ang_tol)\n", - " \n", - "ax.legend()\n", - "\n", - "ax.set_xlabel(\"Distance tolerance (um)\")\n", - "ax.set_ylabel(\"Number of merges\")\n", - "ax.set_title(\"Legend is angle tolerance (deg)\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# please note that this is a very simple duplicate grain detector\n", - "# it doesn't consider things like whether grains can match to multiple other grains\n", - "# or whether there could be duplicate grains within a single slice\n", - "# we're also not currently considering how to merge grains together\n", - "# this involves averaging the positions (easy) and the UBIs (not so easy)\n", - "# hopefully this notebook gives you a starting point though!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (main)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/ImageD11/nbGui/TDXRD/1_3DXRD_refine_parameters.ipynb b/ImageD11/nbGui/TDXRD/use_only_if_needed/1_3DXRD_refine_parameters.ipynb similarity index 100% rename from ImageD11/nbGui/TDXRD/1_3DXRD_refine_parameters.ipynb rename to ImageD11/nbGui/TDXRD/use_only_if_needed/1_3DXRD_refine_parameters.ipynb diff --git a/ImageD11/nbGui/TDXRD/3_3DXRD_look_at_peaks.ipynb b/ImageD11/nbGui/TDXRD/use_only_if_needed/3_look_at_peaks.ipynb similarity index 100% rename from ImageD11/nbGui/TDXRD/3_3DXRD_look_at_peaks.ipynb rename to ImageD11/nbGui/TDXRD/use_only_if_needed/3_look_at_peaks.ipynb diff --git a/ImageD11/parameters.py b/ImageD11/parameters.py index 140bc84f..19a2781c 100644 --- a/ImageD11/parameters.py +++ b/ImageD11/parameters.py @@ -112,6 +112,8 @@ def get_xfab_pars_dict(self, phase_name=None): pars_dict = geometry_pars_dict.copy() # add in the phase pars pars_dict.update(phase_pars_dict) + # re-add the geometry dict to override things like filename if present + pars_dict.update(geometry_pars_dict) else: # just copy the geometry dict pars_dict = geometry_pars_dict.copy() diff --git a/test/papermill_test_notebooks.py b/test/papermill_test_notebooks.py index abe02bfd..a95ef370 100644 --- a/test/papermill_test_notebooks.py +++ b/test/papermill_test_notebooks.py @@ -25,6 +25,8 @@ nb_base_prefix = os.path.join('..', 'ImageD11', 'nbGui') scan_nb_prefix = os.path.join(nb_base_prefix, 'S3DXRD') +bb_nb_prefix = os.path.join(nb_base_prefix, 'TDXRD') + # there are two levels of testing # does the notebook work without errors? @@ -49,6 +51,8 @@ def notebook_route(base_dir, notebook_paths, notebook_param_dicts, notebook_out_ notebook_paths: Ordered list of paths to the notebooks, to be deployed one after the other notebook_param_dicts: Ordered list of dictionaries of parameters, one dict per notebook to be executed """ + if len(notebook_paths) != len(notebook_param_dicts): + raise ValueError('Mismatch between number of notebooks and param dicts!') if os.path.exists(base_dir): raise ValueError('output test directory already exists:', base_dir) os.mkdir(base_dir) @@ -491,13 +495,234 @@ def test_FeAu_JADB_pbp(): 'dset_prefix': "top_", }, ] - if len(scan_nb_names) != len(scan_nb_params): - raise ValueError('Mismatch between number of notebooks and param dicts!') scan_nb_paths = [os.path.join(scan_nb_prefix, name) for name in scan_nb_names] notebook_route(tomo_dir, scan_nb_paths, scan_nb_params) + +def test_FeAu_JADB_bb(): + proc_dir = '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/PROCESSED_DATA/20250127_JADB/default' + nb_names = [ + '0_segment_frelon.ipynb', + '1_index_default.ipynb', + '2_merge_slices.ipynb' + ] + sample = 'FeAu_0p5_tR' + dataset = 'ff1' # first of two layers + dset_file = os.path.join(proc_dir, sample, f'{sample}_{dataset}', f'{sample}_{dataset}_dataset.h5') + bgfile = None + maskfile = '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/mask.edf' + nb_params = [ + {'PYTHONPATH': sys.path[0], # 0_segment_frelon.ipynb + 'splinefile': ['/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/frelon36_spline_20240604_dx.edf','/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/frelon36_spline_20240604_dy.edf'], + 'bgfile': bgfile, + 'maskfile': maskfile, + 'detector': 'frelon3', + 'omegamotor': 'diffrz', + 'dtymotor': 'diffty', + 'options': { + "bgfile":bgfile, + "maskfile":maskfile, + "threshold":70, + "smoothsigma":1.0, + "bgc":0.9, + "minpx":3, + "m_offset_thresh":100, + "m_ratio_thresh":150, + }, + 'dataroot': '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/RAW_DATA/', + 'analysisroot': proc_dir, + 'sample': sample, + 'dataset': dataset, + 'dset_prefix': "ff" + }, + {'PYTHONPATH': sys.path[0], # 1_index_default.ipynb + 'dset_path': dset_file, + 'phase_str': 'Fe', + 'parfile': '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/pars_tdxrd.json', + 'cf_strong_frac': 0.9837, + 'cf_strong_dsmax': 1.01, + 'cf_strong_dstol': 0.01, + 'indexer_ds_tol': 0.01, + 'rings_for_gen': [0, 1], + 'rings_for_scoring': [0, 1, 2, 3], + 'hkl_tols_seq': [0.01, 0.02, 0.03, 0.04], + 'fracs': [0.9, 9.75], + 'max_grains': 1000, + 'makemap_hkl_tol_seq': [0.05, 0.025, 0.01], + 'symmetry': 'cubic', + 'absolute_minpks': 120, + 'dset_prefix': "ff" + }, + {'PYTHONPATH': sys.path[0], # 2_merge_slices.ipynb + 'dset_path': dset_file, + 'phase_str': 'Fe', + 'z_translation_motor': 'samtz', + 'dset_prefix': "ff" + }, + ] + nb_paths = [os.path.join(bb_nb_prefix, name) for name in nb_names] + notebook_route(proc_dir, nb_paths, nb_params) + + + +def test_FeAu_JADB_bb_grid(): + proc_dir = '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/PROCESSED_DATA/20250127_JADB/grid' + nb_names = [ + '0_segment_frelon.ipynb', + '1_index_grid.ipynb', + '2_merge_slices.ipynb' + ] + sample = 'FeAu_0p5_tR' + dataset = 'ff1' # first of two layers + dset_file = os.path.join(proc_dir, sample, f'{sample}_{dataset}', f'{sample}_{dataset}_dataset.h5') + bgfile = None + maskfile = '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/mask.edf' + nb_params = [ + {'PYTHONPATH': sys.path[0], # 0_segment_frelon.ipynb + 'splinefile': ['/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/frelon36_spline_20240604_dx.edf','/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/frelon36_spline_20240604_dy.edf'], + 'bgfile': bgfile, + 'maskfile': maskfile, + 'detector': 'frelon3', + 'omegamotor': 'diffrz', + 'dtymotor': 'diffty', + 'options': { + "bgfile":bgfile, + "maskfile":maskfile, + "threshold":70, + "smoothsigma":1.0, + "bgc":0.9, + "minpx":3, + "m_offset_thresh":100, + "m_ratio_thresh":150, + }, + 'dataroot': '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/RAW_DATA/', + 'analysisroot': proc_dir, + 'sample': sample, + 'dataset': dataset, + 'dset_prefix': "ff" + }, + {'PYTHONPATH': sys.path[0], # 1_index_grid.ipynb + 'dset_path': dset_file, + 'phase_str': 'Fe', + 'parfile': '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/pars_tdxrd.json', + 'cf_strong_frac': 0.9837, + 'cf_strong_dsmax': 1.01, + 'cf_strong_dstol': 0.01, + 'indexer_ds_tol': 0.01, + 'rings_to_use': [0, 1, 3], + 'symmetry': 'cubic', + 'makemap_tol_seq': [0.02, 0.015, 0.01], + 'gridpars': { + 'DSTOL' : 0.004, + 'RING1' : [1,0,], + 'RING2' : [0,], + 'NUL' : True, + 'FITPOS' : True, + 'tolangle' : 0.50, + 'toldist' : 100., + 'NTHREAD' : 1 , + }, + 'grid_xlim': 600, + 'grid_ylim': 600, + 'grid_zlim': 200, + 'grid_step': 100, + 'frac': 0.85, + 'absolute_minpks': 56, + 'dset_prefix': "ff" + }, + {'PYTHONPATH': sys.path[0], # 2_merge_slices.ipynb + 'dset_path': dset_file, + 'phase_str': 'Fe', + 'z_translation_motor': 'samtz', + 'dset_prefix': "ff" + }, + ] + nb_paths = [os.path.join(bb_nb_prefix, name) for name in nb_names] + notebook_route(proc_dir, nb_paths, nb_params) + + +def test_FeAu_JADB_bb_friedel(): + proc_dir = '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/PROCESSED_DATA/20250127_JADB/friedel' + nb_names = [ + '0_segment_frelon.ipynb', + '1_index_friedel.ipynb', + '2_merge_slices.ipynb' + ] + sample = 'FeAu_0p5_tR' + dataset = 'ff1' # first of two layers + dset_file = os.path.join(proc_dir, sample, f'{sample}_{dataset}', f'{sample}_{dataset}_dataset.h5') + bgfile = None + maskfile = '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/mask.edf' + nb_params = [ + {'PYTHONPATH': sys.path[0], # 0_segment_frelon.ipynb + 'splinefile': ['/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/frelon36_spline_20240604_dx.edf','/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/frelon36_spline_20240604_dy.edf'], + 'bgfile': bgfile, + 'maskfile': maskfile, + 'detector': 'frelon3', + 'omegamotor': 'diffrz', + 'dtymotor': 'diffty', + 'options': { + "bgfile":bgfile, + "maskfile":maskfile, + "threshold":70, + "smoothsigma":1.0, + "bgc":0.9, + "minpx":3, + "m_offset_thresh":100, + "m_ratio_thresh":150, + }, + 'dataroot': '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/RAW_DATA/', + 'analysisroot': proc_dir, + 'sample': sample, + 'dataset': dataset, + 'dset_prefix': "ff" + }, + {'PYTHONPATH': sys.path[0], # 1_index_friedel.ipynb + 'dset_path': dset_file, + 'phase_str': 'Fe', + 'parfile': '/data/id11/inhouse2/test_data_3DXRD/TDXRD/FeAu/pars/pars_tdxrd.json', + 'cf_strong_frac': 0.991, + 'cf_strong_dsmax': 1.01, + 'cf_strong_dstol': 0.01, + 'womega': 1.0, + 'weta': 1.0, + 'wtth': 1.5, + 'wI': 0.5, + 'indexer_ds_tol': 0.003, + 'rings_for_gen': [1, 3], + 'rings_for_scoring': [0, 1, 2, 3], + 'hkl_tols_seq': [0.01, 0.02], + 'fracs': [0.9, 0.6], + 'max_grains': 1000, + 'symmetry': 'cubic', + 'gridpars': { + 'DSTOL' : 0.004, + 'NUL' : True, + 'FITPOS' : True, + 'tolangle' : 0.25, + 'toldist' : 100., + 'NTHREAD' : 1 , + 'NPKS': 25 + }, + 'absolute_minpks': 25, + 'dset_prefix': "ff" + }, + {'PYTHONPATH': sys.path[0], # 2_merge_slices.ipynb + 'dset_path': dset_file, + 'phase_str': 'Fe', + 'z_translation_motor': 'samtz', + 'dset_prefix': "ff" + }, + ] + nb_paths = [os.path.join(bb_nb_prefix, name) for name in nb_names] + notebook_route(proc_dir, nb_paths, nb_params) + + if __name__=='__main__': print(papermill.__path__) - test_FeAu_JADB_tomo() - test_FeAu_JADB_pbp() \ No newline at end of file + # test_FeAu_JADB_tomo() + # test_FeAu_JADB_pbp() + # test_FeAu_JADB_bb() + # test_FeAu_JADB_bb_grid() + test_FeAu_JADB_bb_friedel() \ No newline at end of file