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Information on power plants, particularly European ones is scattered
over a few different projects and databases that are introducing their own
different standards. The open-source package package powerplantmatch-
ing provides functions to vertically clean databases and convert them into
one coherent standard. It provides functions to horizontally merge different
databases in order to improve the reliability.
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1 Structure

Figure 1: Structure of the powerplant-module. The modules stand for different
task areas
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The package powerplantmatching consists of eight different modules, shown
in Figure 1 for different tasks helping to standardize and combine power plant
data sets and providing already processed data collections for the research
community.

1.1 Configuration - powerplantmatching.config

The module configuration sets the standard of the data structure. It defines
the exact set of properties (columns) and arguments that should be given per
power plant as well as the set of countries that should be covered by the final
data set. The following Table 1 shows the configuration set of arguments.

Column Argument Python Format

Power plant name original name of the database str
Fueltype {Bioenergy, Geothermal,

Hard Coal, Hydro, Lignite,
Nuclear, Natural Gas, Oil,
Solar, Wind, Other }

str

Technology {CCGT, OCGT, Steam Tur-
bine, Combustion Engine,
Run-Of-River, Pumped Stor-
age, Reservoir }

str

Set {PP, CHP} str
Capacity Brutto or Net Generation Ca-

pacity in MW
float

lat Latitude float
lon Longitude float
Country {EU-27 + CH + NO (+ UK)

minus Cyprus and Malta}
str

YearCommissioned Commissioning year of the
power plants

int

File Source file of the data entry,
if available

str

projectID Identifier of the power plant
in the original source file

str

Table 1: Standardizing data structure for the package.

The set of technological arguments as ’Fueltype’, ’Technology’ and ’Set’ is
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mainly based on the standard of the OPSD project [5]. However, we have
reduced the number of possible combinations between ’Fueltype’-arguments
and ’Technology’-arguments.

The module consists of of five commands, each returning a python list,
determining the configuration. The command europeancountries returns a
list of all considered countries. The command target_columns returns a list
of all column names stated in Table 1. The commands target_fueltypes,
target_technologies and target_sets return the corresponding list of
arguments given in the Table.

1.2 Available data - powerplantmatching.data

The data base of the package consists of six different open-source power plant
datasets from different projects that are either open or at least available free-
off-charge:

• Open Power System Data (OPSD) [5], free license power plant data
for EU-28 countries. The dataset can be called through the function
OPSD. It consists of two datasets provided by the project, one German
specific dataset, including data from the Bundesnetzagentur [6] and
the Umwelt Bundesamt [7], and one European dataset, including the
Czech Republic, France, Netherlands, Poland and Switzerland so far.
Both datasets originally have different formats and can be obtained in
raw version by setting rawDE=True or rawEU=True

• Global Energy Observatory(GEO) [8], free license power plant data
for all countries, can be obtained from an sqlite scraper [9]

• World Resource Institute (WRI) [10], free license power plant data
for all countries, available on their powerwatch repository [11]

• Carbon Monitoring for Action (CARMA) [12, 13], free license
power plant data for all countries

• Energy Storage Exchange (ESE) [14], licensed storage units data
for all countries, but the data can be downloaded separately.

• European Network of Transmission System Operators for Elec-
tricity (ENTSO-E) [15], free license power plant data for EU-28, ad-
ditional statistics about aggregated power plant capacities, which can
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be used as a validation reference. We further use their annual energy
generation report from 2010 [16] as an input for the hydro power plant
technology.

Available power plant data sources do not cover the set of all existing
power plants in Europe but rather reveal gaps for specific countries or fuel
types. The package provides all the different datasets in a processed format.
Therefore all original columns and all arguments are renamed according to
Table 1. To bring all datasets into one coherent standard implies a lot of
individual adjustment.

All datasets are stored in csv format in the ’data’-file of the repository,
most of them in their original form. The calling functions read in the original
files and process a precleaning such that the dataset is returned in a stan-
dardized form. The cleaning functions which are used, are situated in the
cleaning module.

1.3 Vertical cleaning - powerplantmatching.cleaning

In order to compare and combine information from multiple databases, uni-
form standards must be guaranteed. That is, the datasets should be based on
the same set of arguments having consistent formats. As explained in section
1.1, we reduce the set of arguments to eleven columns. This module aims to
easily handle the data alignment, that is, after renaming the basic columns of
an unprocessed dataset, one simply has to apply several provided functions.
Furthermore, it aims to aggregate power plant units from the same power
plant and with same fuel type together. Since the cleaning process is mainly
modifying string expression, this module uses regex expressions for properly
matching and searching for part of strings.

Shifting Information

The first step of the cleaning process implies a rearrangement of information.
Datasets often state more than one information in one data column, e.g. as
a fuel type description ’Hydro Run-of-river’ or ’CHP Hard Coal’. Simply
replacing such expression with general fuel type expressions would discard
important information about each power plant. Therefore, a set of functions
helps to parse relevant columns and if specified keywords are found, equiva-
lent (and coherent) expressions are written into the designated columns. In
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the illustrated case, this means changing ’Hydro Run-of-river’ into ’Hydro’
in the ’Fueltype’-column and adding ’Run-Of-River’ into the ’Technology’-
column, respectively, changing ’CHP Hard Coal’ into ’Hard Coal’ in the
’Fueltype’-column and adding ’CHP’ to the ’Set’-column. The following
three functions are separately dedicated to the three technological classifi-
cation columns:

The command gather_fueltype_info primarily aims to determine a
classification between ’Hard Coal’ and ’Lignite’ where not automatically pro-
vided. It parses the columns ’Name’ and ’Technology’ by default but can be
applied to any set of columns. Datasets like CARMA do not differ between
varieties of coal but give keywords like ’brown coal’ ’lignite’ in the ’Name’
and ’Technology’ column. If none of the expressions are found, the fuel type
is automatically changed to ’Hard Coal’. This bias is motivated by a general
superior number of hard coal power plants.

The command gather_technology_info tries to catch all technology ex-
pressions (stated in Table 1) from the ’Name’ and ’Fueltype’ column by de-
fault, disregarding upper-case letters. All matching expressions are uniquely
added to the technology column.

The command gather_set_info parses the ’Name’ and ’Fueltype’ col-
umns by default, searching for patterns that signify a combined heat and
power plant, e.g. ’hkw’, ’combined heat and power’ or ’cogeneration’. Where
those patterns occur, the ’Set’-column is set to ’CHP’ otherwise, if not such
patterns were found, to ’PP’ which indicates an ordinary power plant.

Cleaning Expressions

It is crucial to clean string expressions in a way that does not discard impor-
tant information but still reduces the expression to its essential information.
In principle only the columns ’Name’ and ’Fueltype’ have to be cleaned in
such a way.

The command clean_powerplantname cleans the column ’Name’ of the
database by deleting very frequent words, numericals and nonalphanumeri-
cal characters of the column. It returns a reduced dataset with a non-empty
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’Name’-column. Power plants entries with no specific name, that is no al-
phabetical character in the name, are deleted, since these cannot not be
considered in the matching process in section 1.4.

The command clean_technology returns the dataset with uniquely stat-
ed technology expressions according to the configuration set (section 1.1).
Expressions as ’combined cycle’, ’critical thermal’ are converted into the cor-
responding configuration expression. Hydro technology expressions can be
converted optionally, since it might be in specific cases useful to keep de-
scriptions as ’Reservoir with natural inflow’ which would be converted to
’Reservoir’ otherwise.

Aggregating Power Plant Units

The aggregation of power plant units is mainly based on the module duke,
section 1.8, which calls the java application DUKE for detecting duplicated
or, in our case, similar, entries within the dataset. According to a predefined
configuration file the application compares every column of every power plant
entry with each other, to find entries which belong to the same power plant.

The command aggregate_units runs DUKE and groups together power
plant units by applying aggregation rules to the different arguments, which
are determined in the subfunction prop_for_groups. Capacities are summed
up, latitude and longitude are averaged. The name of the power plant is
determined by the most frequent occurring name within the set of combined
units. By default, no units are brought together if their fuel type descriptions
are differing.

The function provides the feature to skip the duke process and instead to
use an cached aggregation file from a previous aggregation process, triggered
with the argument use_saved_aggregation. The file is stored in data/out/-
aggregation_groups_XX.csv with XX being the name for the dataset, which
has to be passed to the function. Skipping the DUKE process can save time
in case one needs to aggregate power plants without wanting to run the
aggregation algorithm again.
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1.4 Combining Data From Different Sources -
powerplantmatching.matching

Once a set of uniformly standardized databases has been created, one can
merge them, such that entries from different sources, that represent the same
power plant, are brought together. Thus, the datasets can complement each
other and improve their reliability. The package matching supplies several
modes of linking and combining different datasets. Similar to the module
cleaning 1.3, these functions are mainly based on the module duke 1.8
which is set to record linkage mode [17].

Combining Model

One main task of this package is to extent the matching capability of DUKE,
which restricts the number of datasets to maximally two. Therefore, it is only
possible to create different sets of pair-links between the different combina-
tions of the datasets.
Assume, we have three datasets to combine, a = {a1, · · · , al}, b = {b1, · · · ,
bm} and c = {c1, · · · , cn}. In order to assemble all to one dataset a-b-c, we
separately link a-b, a-c and b-c. We have to guarantee that each entry has
maximally one link to another data set, e.g. ai only has maximally one link
to {b1, · · · , bm}. These three sets of pair-links build the base of the combined
set a-b-c. Every pair appearing in the original sets has to reappear in the
combined set. Furthermore, also indirect links are created in case two entries
from different datasets, which are not directly linked, match the same entry
from a third dataset. The following Table 2 shows an short example.

a-b

a1 b1

a2 b3

...
...

+

a-c

a1 c2
a2 c3

...
...

+

b-c

b3 c3

b4 c5

...
...

→

a-b-c

a1 b1 c2

a2 b3 c3

b4 c5

...
...

...

Table 2: Example of combining sets of pair-links

One easily can see that in a-b-c the indices b1 and c2 are linked despite they
have not matched in b-c. In the second row, however, all entries of the com-
bined set a-b-c have matched directly among each other. In the third row, it
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remains a single pair, which has no further links. This process is applicable
for any number of data sets.

For implementing the previously described process the following functions
are available:

In order to guarantee a one-to-one link for two matched datasets, the
function best_matches takes the link output from DUKE and only returns
the matches with the highest matching scores if multiple links per power
plant occur.

The function cross_matches combines multiple sets of pairs and returns
one consistent dataframe, according to the procedure in Table 2. Hence,
identifiers of two datasets can appear in one row, even though they did
not match directly but indirectly through a connecting identifier of another
database.

Main Use

In order to create a combined dataset, the module provides three convenient
functions that barely differ.

The function link_multiple_datasets initiates a DUKE-based horizon-
tal matching of multiple databases. It returns the indices pointing out the
matches between the datasets. All properties of the columns ’Name’, ’Fuel-
type’, ’Country’, ’Capacity’ and ’Geoposition’ are being compared, in order
to work out the same powerplant in different datasets. The function uses are
mainly based on the functions duke, best_matches and cross_matches. As
mentioned before, the match is in one-to-one mode.

The function combine_multiple_datasets works the similar way but in-
stead of returning all matching indices, it returns all information from each
dataset combined in one multi-indexed pandas.Dataframe. The first column
level indicates the property given in 1, the second column level gives the
dataset name.

The function reduce_matched_dataframe applies different aggregation rules,
given in Table 3, to the output of combine_multiple_datasets. Thereby,
the large combined dataset is reduced to a small dataset, such that each
power plant has only one claim per property.
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Column Rule

Name Every name of the different databases
Fueltype Most frequent claimed one
Technology All different Technology in a row
Country Take the uniquely stated country
Capacity Median/Mean
lat Mean
lon Mean
File All files in a row
projectID Python dictionary referencing all origi-

nal powerplants that are included

Table 3: Aggregation rules for reducing the matched entries of multiple data sets

Note that for latitude and longitude we aggregate the claims by averaging.
As for the capacity, it turned out that taking the median or the mean achieves
reasonable results. The claims for country cannot differ, otherwise the power
plants do not match.

Example

As for an practical insight, we will step-by-step combine two subsets to one.
Therefore, we first of all call define two datasets, ’Dataset1’ and ’Dataset2’,
from our data sources GEO and CARMA:

import powerplantmatching as pm
Dataset1 = pm.data.GEO().head()
Dataset2 = pm.data.CARMA().loc[[8,13,14,15,19,21]]

which, in reduced form, initiates the datasets
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Name Fueltype Technology Country Capacity lat lon

0 Aarberg Hydro Run-Of-River CH 15.5 47.0378 7.272
1 Aberthaw Coal Thermal UK 1500 51.3873 -3.4049
2 Abono Coal Thermal ES 921.7 43.5528 -5.7231
3 Abwinden

asten
Hydro nan AT 168 48.248 14.4305

4 Aceca Oil CHP ES 629 39.941 -3.8569
5 Aceca

fenosa
Natural
Gas

CCGT ES 400 39.9427 -3.8548

Table 4: ’Dataset1’: Extract from the GEO dataset

and

Name Fueltype Technology Country Capacity lat lon

8 Aarberg Hydro nan CH 14.609 47.044 7.2758
13 Abbey

mills
Oil nan UK 6.4 51.687 -0.0042

14 Abertay Other nan UK 8 57.178 -2.1868
15 Aberthaw Coal nan UK 1552.5 51.387 -3.4067
19 Ablass Wind nan DE 18 51.233 12.95
21 Abono Coal nan ES 921.7 43.559 -5.7228

Table 5: ’Dataset2’: Extract from the CARMA dataset

Apparently the entries 0,1 and 2 of ’Dataset1’ relate to the same power plants
as the entries 8, 15 and 21 of ’Dataset2’. Applying the matching algorithm
with

pm.matching.link_multiple_datasets([Dataset1,Dataset2],
[’Dataset 1’, ’Dataset 2’])

returns

Dataset 1 Dataset 2

0 0 8
1 1 15
2 2 21

Table 6: Links for ’Dataset1’ and ’Dataset2’
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Whereas in order to obtain the full combined dataset, we use

matched = pm.matching.combine_multiple_datasets([Dataset1,Dataset2],
[’Dataset 1’, ’Dataset 2’])

print matched

which returns the following output.

Name Fueltype Technology
Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

0 Aarberg Aarberg Hydro Hydro Run-Of-River nan
1 Aberthaw Aberthaw Coal Coal Thermal nan
2 Abono Abono Coal Coal Thermal nan

Country Capacity lat
Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

0 CH CH 15.5 14.609 47.0378 47.0444
1 UK UK 1500 1552.5 51.3873 51.3875
2 ES ES 921.7 921.7 43.5528 43.5588

lon File projectID
Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

0 7.272 7.27578 nan nan 1180 64
1 -3.4049 -3.40675 nan nan 246 123
2 -5.7231 -5.72287 nan nan 203 139

Table 7: Combined dataset from the two extracts ’Dataset1’ and ’Dataset2’

Now, one can easily reduce the dataframe by applying aggregation rules from
Table 3:

pm.matching.reduce_matched_dataframe(matched)

This returns the following more handy Table
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Dataset 1 Dataset 2 Fueltype Technology Country

0 Aarberg Aarberg Hydro Run-Of-River CH
1 Aberthaw Aberthaw Coal Thermal UK
2 Abono Abono Coal Thermal ES

Capacity lat lon projectID

0 15.5 47.04 7.273 {’Dataset 1’: 1180, ’Dataset 2’: 64}
1 1552.5 51.38 -3.405 {’Dataset 1’: 246, ’Dataset 2’: 123}
2 921.7 43.55 -5.722 {’Dataset 1’: 203, ’Dataset 2’: 139}

Table 8: Reduced merged data set from the two extracts. Whereas both original
power plant names are kept, the multiple statements of the other arguments are
combined through the rules in Table 3 (page 10).

Note, that the names from the different sources are kept for ease of referenc-
ing, whereas the claims about the other plant parameters have been reduced
an aggregate value using the rules.

1.5 Fine Tuning - powerplantmatching.heuristics

For final adjustments the module heuristics provides functions to manip-
ulate data. Data completeness is one of the most important features for
reliable simulations. Even through the matching process of multiple data
sets, not all existing power plants are included. Two functions help to man-
ually fine tune the (matched) data:

The function rescale_capacities_to_country_totals returns an ex-
tra column ’Scaled Capacity’ with a linearly up or down scaled capacity for
each power plant, to match the statistics of the ENTSO-E country totals.
The latter provides country-wise information about the aggregated capacity
for each fuel type. This allows a capacity adjustment for power plants of a
selected fuel type but can also applied to all fuel types. The scaling factor
is determined by the ratio between the data set’s capacity totals per fuel-
type and country and the ENTSO-E capacity totals per fueltype and country.

The function extend_by_non_matched supports an non-artificial data ex-
tension for matched datasets. It adds non-matched power plants of a selected
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source to the matched dataset. This is convenient in the case of uneven re-
liable input data sources. Reliable data sources will then appear completely
in the matched dataset.

The package aims to provide a further function for filling the information
about missing hydro technology, which will also be part of the heuristics.
By now this in done externally, and will be presented in section 2

1.6 Processed Data -
powerplantmatching.collection

For simplifying the access to processed data, the module collection provides
multiple functions for read-in or updating the matched data.

The core function Collection takes a list of data sources names, e.g.
"[’GEO’, ’OPSD’]", as an argument and reads-in the resulting matched
dataset from the stored file in powerplantmatching/data/out if available.
In case no stored file is found, the function automatically starts a matching
process, including vertical cleaning and horizontal matching of the dataset
combination. After the process, the matched dataset is returned and added
to the data file. By setting reduced=True, the reduced dataset, resulting
from reduce_matched_dataframe, is returned. In order to speed up the ver-
tical cleaning, one can set use_saved_aggregation=True, which takes stored
information about vertical cleaning and avoids to rerunning DUKE.

Convenience functions as Carma_ENTSOE_GEO_OPSD_matched_reduced are
based on the same concept, but represent a shortcut for the given combina-
tion in the function name.

1.7 Auxiliary Functions - powerplantmatching.utils

Data processing requires constant inspection and validation. For the power
plant data collection it is convenient and helpful to double-check the aggre-
gated capacities for each country, fuel type or both. The module power-
plantmatching.utils contains functions for data inspection and plotting,
for revising the property of the data or to compare two or more data sets
against each other. The function lookup() returns a lookup Table for the
dataset. By setting the keyword ’by ’ one can define the aggregation type:

14



import powerplantmatching as pm
geo = pm.data.GEO()
print pm.utils.lookup(geo, by=’Country’)
print pm.utils.lookup(geo, by=’Fueltype’)
print pm.utils.lookup(geo, by=’Country, Fueltype’)

returns

Country Capacity

Austria 12280
Belgium 10317
Bulgaria 9481
Croatia 3274
Czech Republic 9537
...

...
Total 515226

Table 9: Aggregated by country,
third output

Fueltype Capacity

Coal 150638
Geothermal 562
Hydro 86775
Natural Gas 154617
Nuclear 103040
Oil 19070
Waste 522
Total 515226

Table 10: Aggregated by fuel type,
second output

Austria Belgium Bulgaria Croatia Czech Republic · · ·

Coal 1003 889 4970 330 8033 · · ·
Geothermal 0 0 0 0 0 · · ·
Hydro 8553 1393 2512 1623 1505 · · ·
Natural Gas 2724 4906 0 582 0 · · ·
Nuclear 0 3129 2000 0 0 · · ·
...

...
...

...
...

...
. . .

Table 11: Aggregated by country and fuel-type, third output

Passing a list of data sets to the function extends the Table such that one
can easily compare the data sets. As a means of comparison, it is convenient
to plot the aggregated totals, as done by the following code:

import powerplantmatching as pm

geo = pm.utils.set_uncommon_fueltypes_to_other(pm.data.GEO())
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carma = pm.utils.set_uncommon_fueltypes_to_other(pm.data.CARMA())
entsoe = pm.utils.set_uncommon_fueltypes_to_other(pm.data.ENTSOE())

pm.utils.lookup([geo, carma, entsoe],
keys=[’GEO’, ’CARMA’, ’ENTSO-E’],
by=’Fueltype’).plot(kind=’bar’)

Figure 2: Plot created from the preceding code

Note that in order to avoid uncommon fuel type descriptions the function
set_uncommon_fueltypes_to_other changes those into "Other".

For convenient data read-in, the function read_csv_if_string was de-
fined, which reads in the csv file of a given path and returns it in the correct
format.

For data sets which only provide location descriptions, such as city, street
or postcode, the function parse_Geoposition sets a nominatim request for
the geoposition of a specific location in a country. It returns a tuples with
(latitude, longitude), if the request was successful, and None otherwise. In
particular, this was used for the WRI data and can be used for the PLATTS
data, which initially does not provide geopositions.
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1.8 Matching Engine - powerplantmatching.duke

The cleaning and matching process, presented in sections 1.3 and 1.4, heavily
relies on DUKE [18], a java application specialized for deduplicating and
linking data. The module duke allows calling the java application from the
python environment.

DUKE provides many built-in comparators such as numerical, string or
geoposition comparators. According to the settings in the configuration file,
the engine does a detailed comparison for each single argument (power plant
name, fuel-type etc.) using adjusted comparators and probability bound-
aries. The latter gives the boundary for the score that DUKE states for the
match of two power plant attributes. For example, if the upper boundary for
the country column is at 0.7, and two power plants have exact the same coun-
try string, than DUKE states a ’country score’ of 0.7. In this way scores are
stated for each column within the probability boundaries. From the individ-
ual columns scores it computes a compound score for the likeliness that the
two power plant records refer to the same power plant. If the score exceeds
a given threshold, the two records of the power plant are linked and merged
into one data set. Table 12 shows the set of compared columns with the
corresponding DUKE comparators and probability ranks for the horizontal
matching (two different sources). The threshold for two power plants to be
linked is 0.985.

column comparator probability boundary

Power plant name JaroWinklerTokenized [0.09, 0.99]
Fueltype QGramComparator [0.09, 0.7]
Capacity NumericComparator [0.1, 0.75]
lat GeoComparator [0.1, 0.8]
lon GeoComparator [0.1, 0.8]
Country QGramComparator [0.0, 0.53]

Table 12: DUKE comparison configuration. The table shows the compared
columns and applied comparators with probability boundaries when matching two
different datasets.
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2 Hydro Technology
Whereas all of the power plants have unique fuel type specifications, the
technology argument is not necessarily given for each power plant entry.
However, for modeling hydro power plants its makes a big difference whether
one can store excess energy as in pumped hydro storage, or only gain power
dependent from the inflow, as for run-of-river power plants. In order to fill
the missing gap an package extern script helps to identify the technology of
hydro power plants. It mainly consists of a supervised learning algorithm, of
the scikit-learn python package [19], which takes the already classified hydro
plants as a training set in order to determine the technology of the unspeci-
fied plants.

The combined data, matching the sources Carma, ENTSOE, ESE, GEO,
OPSD, WRI, includes 1737 hydro power plants. Of those, 1310 power plants
have specified technologies and 427 are not specified. Since our data already
covers most of the pumped storage power plants in Europe (provided by the
ESE data base), we only keep run-of-river power plants and reservoirs, which
reduces the training set to 1157 power plants. Thereby, we assume that the
427 unspecified hydro power plants are either run-of-river power plants or
reservoirs.

A European height map, retrieved from [20], is used to align altitude and
slope of the surrounding to the training set. Those properties are passed
to the classifier. Therefore, the classifier can identify relations as flat sur-
roundings and low altitude with run-of-river power plants, steep surrounding
and high altitude with reservoir. The missing technology data is then fitted
by the classifier. For further improvement, the fitting weights of the classi-
fier are adjusted for each country, such that the aggregated capacity values
roughly match the stated ENTSOE net generation capacity totals [16]. In
Figure 3, we show the resulting technology classifications for each country.
Mountainous countries as Switzerland and Norway include a strong amount
of hydro power plants, most of them pumped hydro or reservoirs. Countries
as France additionally have a lot of run-of-river power plants in the flatter
regions.
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Figure 3: Distribution of the hydro technologies within the countries. The miss-
ing technologies are fitted to the total capacities stated in by the ENTOSE net
generation capacities [16].

3 Resulting Power Plant Data
The processed data, provided by powerplantmatching.collection, com-
bines the standardized data of the different input datasets described in sec-
tion 1.2. In this section, we compare the aggregated totals of the resulting
data with the original input data and the ENTSOE-statistics. This serves as
a rough validation of the data and reveals missing gaps.

In Figure 4, we show the fuel type aggregated totals of the input databases
in comparison to the matched database. As one can see, the heterogenous
distribution of the input data averages out through the matching process.
Note that the input data hardly provides information about solar and wind
power generators. Furthermore, the CARMA database includes more power
plants for all fuel types except for lignite, as the CARMA database does not
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distinguish between lignite and hard coal and all coal power plants are labeled
as hard coal. For hydro power plants all databases provide information as
pumped hydro power plants of the ESE database are also included.

Figure 4: Comparison of the single databases capacity totals with the matched
database.

The spatial distribution of the power plants and their according capacity
size is shown in Figure 5. The circle size in the legend refers to a capac-
ity of 4 GW. The largest European power plant is the ’Gravelines Nuclear
Power Station’ in northern France with 5706 MW. As one can see, most of
the hydro power plants are located around the Alps and Scandinavia. A
high conventional generator density occurs around Belgium and North West
Germany.
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Figure 5: Map of power plants, the size of the circles are proportional to the
capacity of the power plants. The circles in the legend correspond to a capacity of
4 GW.

A more detailed description of the fuel type and country aggregated ca-
pacity totals is shown in Figure 6. Here, the aggregated totals for each fuel
type, except for wind and solar, are displayed for each country in compari-
son with the ENTSOE statistics, whereas all corresponding values are linked
together. Uncommon fuel type descriptions as ’Bioenergy’ or ’Waste’ are
added up to ’Other’. The country totals are added on top.
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Figure 6: Country and fuel type specific comparison of the matched database
with the aggregated capacities of the ENTSOE statistics.

As one can see, most of the country totals are nearly covered. The biggest
gaps occur in France, Germany, Sweden and UK. The fuel type ’Other’ is
often underestimated by the matched dataset, especially in Austria, France,
Germany and Italy, as well as ’Natural Gas’ in Germany. On the other hand
the dataset reveal some (small) overestimations as for Germany with fuel
type ’Hard Coal’ and Italy with fuel type ’Other’. Note that some of these
errors may occur because of different fuel type specifications of the initial
datasets.

In the simple fuel type aggregation, see Figure 7, the biggest gaps occur
for wind and solar power generators. Also the fuel types ’Other’ and ’Hydro’
are not well covered yet. Thus, it is to assume that the matched dataset
covers most of the conventional European power plants. Excluding wind and
solar, the matched dataset represents a total European capacity of 682 GW
whereas the ENTSO-E statistics claim 769 GW.
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Figure 7: Fuel type specific comparison of the matched database and the
ENTSOE statistics. The total capacity is at 72% (88% without wind and solar) of
the ENTSOE total.

3.1 Upcoming Tasks

Even though the resulting dataset covers most of the conventional power
plants so far, the powerplantmatching package is still in process. In the
following, we briefly discuss the upcoming tasks and planned changes.

In order to further improve the resulting data, the gaps mentioned in the
previous section should be dealt with. Since wind and solar data is difficult
to obtain, the priority is set on conventional data. A proper analysis of the
input data should clarify whether the gaps emerge from missing input infor-
mation or from inaccurate standardizing or matching.

Except for single power plant entries, which were double checked man-
ually, the data could not yet be validated on plant level. We plan to (let)
compare the processed data (by a third party) with a commercial European
power plant database like PLATTS [21].

The aggregation of power plant units during the vertical cleaning was
not yet validated. With a validation set that provides correct power plant
information on unit level and on aggregated level, the resulting set of aggre-
gate_units in section 1.3 could straightforwardly be double-checked.
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For usability of the data, it is crucial to Figure out how to distinguish
and deal with capacities given as net and gross values. Since most of the
original databases do not include information about the classification of the
capacity value, taking the mean or the maximum of the claimed capaci-
ties when aggregating power plants leads to incorrect values. An idea of a
workaround is to fix a priority range of the databases according to reliability
of the database giving the net capacity. When aggregating claims together,
this range determines which database information should be given priority.
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