From c41f76b9b84ca5f3f88117f3f5104510528d98a3 Mon Sep 17 00:00:00 2001 From: Fabian Plum Date: Tue, 5 Dec 2023 00:30:47 +0000 Subject: [PATCH] Improved exception handling for YOLO and DLC use --- __init__.py | 364 +++++++++++++++++++++++++++------------------------- 1 file changed, 190 insertions(+), 174 deletions(-) diff --git a/__init__.py b/__init__.py index f7af399..ba4b113 100644 --- a/__init__.py +++ b/__init__.py @@ -106,7 +106,7 @@ def execute(self, context): if not os.path.isfile(yolo_cfg_path_temp) or yolo_cfg_path_temp.split(".")[-1] != "cfg": self.report({'ERROR'}, 'Provide the .cfg file of a suitable YOLOv3 or V4 model') return {'CANCELLED'} - + yolo_weights_path_temp = bpy.path.abspath(context.scene.detection_weights_path) if not os.path.isfile(yolo_weights_path_temp) or yolo_weights_path_temp.split(".")[-1] != "weights": self.report({'ERROR'}, 'Provide the .weights file of a trained YOLOv3 or V4 model') @@ -331,10 +331,15 @@ def execute(self, context): raise ValueError("Invalid data file path `" + os.path.abspath(yolo_paths.data) + "`") if network is None: - network, class_names, _ = darknet.load_network(yolo_paths.cfg, - yolo_paths.data, - yolo_paths.weights, - batch_size=1) + try: + network, class_names, _ = darknet.load_network(yolo_paths.cfg, + yolo_paths.data, + yolo_paths.weights, + batch_size=1) + except Exception as e: # work on python 3.x + self.report({'ERROR'}, e) + return {'CANCELLED'} + if altNames is None: try: with open(yolo_paths.data) as metaFH: @@ -353,8 +358,9 @@ def execute(self, context): altNames = [x.strip() for x in namesList] except TypeError: pass - except Exception: - pass + except Exception as e: # work on python 3.x + self.report({'ERROR'}, e) + return {'CANCELLED'} print("Starting the YOLO loop...") @@ -383,176 +389,181 @@ def execute(self, context): executed_from_frame = bpy.context.scene.frame_current while True: - if tracker_continue: - if frame_counter == context.scene.frame_end + 3 - executed_from_frame: + try: + if tracker_continue: + if frame_counter == context.scene.frame_end + 3 - executed_from_frame: + bpy.context.scene.frame_current = context.scene.frame_end + break + elif frame_counter == context.scene.frame_end + 3 - context.scene.frame_start: bpy.context.scene.frame_current = context.scene.frame_end break - elif frame_counter == context.scene.frame_end + 3 - context.scene.frame_start: - bpy.context.scene.frame_current = context.scene.frame_end - break - - prev_time = time.time() - ret, frame_read = cap.read() - if not ret: - break - - clip_width = frame_read.shape[1] - clip_height = frame_read.shape[0] - frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB) - - # apply mask, if defined - if img_mask is not None: - frame_rgb = cv2.bitwise_and(frame_rgb, frame_rgb, mask=img_mask) - - frame_resized = cv2.resize(frame_rgb, - (video_width, - video_height), - interpolation=cv2.INTER_LINEAR) - - darknet.copy_image_from_bytes(darknet_image, frame_resized.tobytes()) - - # thresh : detection threshold -> lower = more sensitive (higher recall) - # nms : non maximum suppression -> higher = allow for closer proximity between detections - detections = darknet.detect_image(network, class_names, darknet_image, - thresh=bpy.context.scene.detection_activation_threshold, - nms=bpy.context.scene.detection_nms) - print("Frame:", frame_counter + 1) - viable_detections = [] - centres = [] - bounding_boxes = [] - predicted_classes = [] - - if tracker_continue: - bpy.context.scene.frame_current = executed_from_frame + frame_counter + 1 - else: - bpy.context.scene.frame_current = bpy.context.scene.frame_start + frame_counter - - for label, confidence, bbox in detections: - if bbox[2] >= bpy.context.scene.detection_min_size and \ - bbox[3] >= bpy.context.scene.detection_min_size: - predicted_classes.append(label) - # we need to scale the detections to the original imagesize, as they are downsampled above - scaled_xy = scale_detections(x=bbox[0], y=bbox[1], - network_w=darknet.network_width(network), - network_h=darknet.network_height(network), - output_w=frame_rgb.shape[1], output_h=frame_rgb.shape[0]) - viable_detections.append(scaled_xy) - - # kalman stuff here - centres.append(np.round(np.array([[bbox[0]], [bbox[1]]]))) - - # add bounding box info by associating it with corresponding matched centres / tracks - bounding_boxes.append([bbox[0] - bbox[2] / 2, - bbox[0] + bbox[2] / 2, - bbox[1] - bbox[3] / 2, - bbox[1] + bbox[3] / 2]) - - all_detection_centres.append(viable_detections) - - if bpy.context.scene.detection_enforce_constant_size: - image = cvDrawBoxes(detections, frame_resized, min_size=bpy.context.scene.detection_min_size, - constant_size=bpy.context.scene.detection_constant_size, - class_colours=class_colours) - else: - image = cvDrawBoxes(detections, frame_resized, min_size=bpy.context.scene.detection_min_size, - class_colours=class_colours) - image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) - - # before we show stuff, let's add some tracking fun - # SO, if animals are detected then track them - - if len(centres) > -1: - - # Track object using Kalman Filter - tracker_KF.Update(centres, - predicted_classes=predicted_classes, - bounding_boxes=bounding_boxes) - - # For identified object tracks draw tracking line - # Use various colors to indicate different track_id - for i in range(len(tracker_KF.tracks)): - if len(tracker_KF.tracks[i].trace) > 1: - mname = "track_" + str(tracker_KF.tracks[i].track_id) - - # record the predicted class at each increment for every track - if mname in track_classes: - track_classes[mname][bpy.context.scene.frame_current] = \ - tracker_KF.tracks[i].predicted_class[ - -1] - else: - track_classes[mname] = { - bpy.context.scene.frame_current: tracker_KF.tracks[i].predicted_class[-1]} - - if mname not in track_colors: - track_colors[mname] = np.random.randint(low=100, high=255, size=3).tolist() - - # draw direction of movement onto footage - x_t, y_t = tracker_KF.tracks[i].trace[-1] - tracker_KF_velocity = 5 * (tracker_KF.tracks[i].trace[-1] - tracker_KF.tracks[i].trace[-2]) - x_t_future, y_t_future = tracker_KF.tracks[i].trace[-1] + tracker_KF_velocity * 0.1 - cv2.arrowedLine(image, (int(x_t), int(y_t)), (int(x_t_future), int(y_t_future)), - (np.array(track_colors[mname]) - np.array([70, 70, 70])).tolist(), 3, - tipLength=0.75) - - for j in range(len(tracker_KF.tracks[i].trace) - 1): - hind_sight_frame = bpy.context.scene.frame_current - len(tracker_KF.tracks[i].trace) + j - # Draw trace line on preview - x1 = tracker_KF.tracks[i].trace[j][0][0] - y1 = tracker_KF.tracks[i].trace[j][1][0] - x2 = tracker_KF.tracks[i].trace[j + 1][0][0] - y2 = tracker_KF.tracks[i].trace[j + 1][1][0] + + prev_time = time.time() + ret, frame_read = cap.read() + if not ret: + break + + clip_width = frame_read.shape[1] + clip_height = frame_read.shape[0] + frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB) + + # apply mask, if defined + if img_mask is not None: + frame_rgb = cv2.bitwise_and(frame_rgb, frame_rgb, mask=img_mask) + + frame_resized = cv2.resize(frame_rgb, + (video_width, + video_height), + interpolation=cv2.INTER_LINEAR) + + darknet.copy_image_from_bytes(darknet_image, frame_resized.tobytes()) + + # thresh : detection threshold -> lower = more sensitive (higher recall) + # nms : non maximum suppression -> higher = allow for closer proximity between detections + detections = darknet.detect_image(network, class_names, darknet_image, + thresh=bpy.context.scene.detection_activation_threshold, + nms=bpy.context.scene.detection_nms) + print("Frame:", frame_counter + 1) + viable_detections = [] + centres = [] + bounding_boxes = [] + predicted_classes = [] + + if tracker_continue: + bpy.context.scene.frame_current = executed_from_frame + frame_counter + 1 + else: + bpy.context.scene.frame_current = bpy.context.scene.frame_start + frame_counter + + for label, confidence, bbox in detections: + if bbox[2] >= bpy.context.scene.detection_min_size and \ + bbox[3] >= bpy.context.scene.detection_min_size: + predicted_classes.append(label) + # we need to scale the detections to the original imagesize, as they are downsampled above + scaled_xy = scale_detections(x=bbox[0], y=bbox[1], + network_w=darknet.network_width(network), + network_h=darknet.network_height(network), + output_w=frame_rgb.shape[1], output_h=frame_rgb.shape[0]) + viable_detections.append(scaled_xy) + + # kalman stuff here + centres.append(np.round(np.array([[bbox[0]], [bbox[1]]]))) + + # add bounding box info by associating it with corresponding matched centres / tracks + bounding_boxes.append([bbox[0] - bbox[2] / 2, + bbox[0] + bbox[2] / 2, + bbox[1] - bbox[3] / 2, + bbox[1] + bbox[3] / 2]) + + all_detection_centres.append(viable_detections) + + if bpy.context.scene.detection_enforce_constant_size: + image = cvDrawBoxes(detections, frame_resized, min_size=bpy.context.scene.detection_min_size, + constant_size=bpy.context.scene.detection_constant_size, + class_colours=class_colours) + else: + image = cvDrawBoxes(detections, frame_resized, min_size=bpy.context.scene.detection_min_size, + class_colours=class_colours) + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + + # before we show stuff, let's add some tracking fun + # SO, if animals are detected then track them + + if len(centres) > -1: + + # Track object using Kalman Filter + tracker_KF.Update(centres, + predicted_classes=predicted_classes, + bounding_boxes=bounding_boxes) + + # For identified object tracks draw tracking line + # Use various colors to indicate different track_id + for i in range(len(tracker_KF.tracks)): + if len(tracker_KF.tracks[i].trace) > 1: + mname = "track_" + str(tracker_KF.tracks[i].track_id) + + # record the predicted class at each increment for every track + if mname in track_classes: + track_classes[mname][bpy.context.scene.frame_current] = \ + tracker_KF.tracks[i].predicted_class[ + -1] + else: + track_classes[mname] = { + bpy.context.scene.frame_current: tracker_KF.tracks[i].predicted_class[-1]} + if mname not in track_colors: track_colors[mname] = np.random.randint(low=100, high=255, size=3).tolist() - cv2.line(image, (int(x1), int(y1)), (int(x2), int(y2)), - track_colors[mname], 2) - - if x2 != 0 and y2 != 0 and x2 <= clip_width and y2 <= clip_height: - if mname not in clip.tracking.objects[0].tracks: - # add new tracks to the set of markers - bpy.ops.clip.add_marker(location=(x2 / clip_width, 1 - y2 / clip_height)) - clip.tracking.tracks.active.name = mname - # return {"FINISHED"} - - # write track to clip markers - # update marker positions on the current frame - # remember to invert the y axis, because things are never easy or correct by default - # constrain x1 and - clip.tracking.objects[0].tracks[mname].markers.insert_frame(hind_sight_frame, - co=(x2 / clip_width, - 1 - y2 / clip_height)) - if context.scene.detection_enforce_constant_size: - clip.tracking.objects[0].tracks[mname].markers.find_frame( - hind_sight_frame).pattern_corners = ( - (ROI_size / clip_width, ROI_size / clip_height), - (ROI_size / clip_width, -ROI_size / clip_height), - (-ROI_size / clip_width, -ROI_size / clip_height), - (-ROI_size / clip_width, ROI_size / clip_height)) - else: - clip.tracking.objects[0].tracks[mname].markers.find_frame( - hind_sight_frame).pattern_corners = ( - ((tracker_KF.tracks[i].bbox_trace[-1][0] - x2) / clip_width, - (tracker_KF.tracks[i].bbox_trace[-1][3] - y2) / clip_height), - ((tracker_KF.tracks[i].bbox_trace[-1][1] - x2) / clip_width, - (tracker_KF.tracks[i].bbox_trace[-1][3] - y2) / clip_height), - ((tracker_KF.tracks[i].bbox_trace[-1][1] - x2) / clip_width, - (tracker_KF.tracks[i].bbox_trace[-1][2] - y2) / clip_height), - ((tracker_KF.tracks[i].bbox_trace[-1][0] - x2) / clip_width, - (tracker_KF.tracks[i].bbox_trace[-1][2] - y2) / clip_height)) - - cv2.putText(image, - mname, - (int(x2) - int(bpy.context.scene.detection_constant_size / 2), - int(y2) - bpy.context.scene.detection_constant_size), cv2.FONT_HERSHEY_SIMPLEX, - 0.4, - track_colors[mname], 2) - if context.scene.tracker_save_video: - video_out.write(image) - cv2.imshow("Live tracking", image) - if cv2.waitKey(1) & 0xFF == ord("q"): - bpy.context.scene.frame_current -= 2 - break - - frame_counter += 1 + + # draw direction of movement onto footage + x_t, y_t = tracker_KF.tracks[i].trace[-1] + tracker_KF_velocity = 5 * (tracker_KF.tracks[i].trace[-1] - tracker_KF.tracks[i].trace[-2]) + x_t_future, y_t_future = tracker_KF.tracks[i].trace[-1] + tracker_KF_velocity * 0.1 + cv2.arrowedLine(image, (int(x_t), int(y_t)), (int(x_t_future), int(y_t_future)), + (np.array(track_colors[mname]) - np.array([70, 70, 70])).tolist(), 3, + tipLength=0.75) + + for j in range(len(tracker_KF.tracks[i].trace) - 1): + hind_sight_frame = bpy.context.scene.frame_current - len(tracker_KF.tracks[i].trace) + j + # Draw trace line on preview + x1 = tracker_KF.tracks[i].trace[j][0][0] + y1 = tracker_KF.tracks[i].trace[j][1][0] + x2 = tracker_KF.tracks[i].trace[j + 1][0][0] + y2 = tracker_KF.tracks[i].trace[j + 1][1][0] + if mname not in track_colors: + track_colors[mname] = np.random.randint(low=100, high=255, size=3).tolist() + cv2.line(image, (int(x1), int(y1)), (int(x2), int(y2)), + track_colors[mname], 2) + + if x2 != 0 and y2 != 0 and x2 <= clip_width and y2 <= clip_height: + if mname not in clip.tracking.objects[0].tracks: + # add new tracks to the set of markers + bpy.ops.clip.add_marker(location=(x2 / clip_width, 1 - y2 / clip_height)) + clip.tracking.tracks.active.name = mname + # return {"FINISHED"} + + # write track to clip markers + # update marker positions on the current frame + # remember to invert the y axis, because things are never easy or correct by default + # constrain x1 and + clip.tracking.objects[0].tracks[mname].markers.insert_frame(hind_sight_frame, + co=(x2 / clip_width, + 1 - y2 / clip_height)) + if context.scene.detection_enforce_constant_size: + clip.tracking.objects[0].tracks[mname].markers.find_frame( + hind_sight_frame).pattern_corners = ( + (ROI_size / clip_width, ROI_size / clip_height), + (ROI_size / clip_width, -ROI_size / clip_height), + (-ROI_size / clip_width, -ROI_size / clip_height), + (-ROI_size / clip_width, ROI_size / clip_height)) + else: + clip.tracking.objects[0].tracks[mname].markers.find_frame( + hind_sight_frame).pattern_corners = ( + ((tracker_KF.tracks[i].bbox_trace[-1][0] - x2) / clip_width, + (tracker_KF.tracks[i].bbox_trace[-1][3] - y2) / clip_height), + ((tracker_KF.tracks[i].bbox_trace[-1][1] - x2) / clip_width, + (tracker_KF.tracks[i].bbox_trace[-1][3] - y2) / clip_height), + ((tracker_KF.tracks[i].bbox_trace[-1][1] - x2) / clip_width, + (tracker_KF.tracks[i].bbox_trace[-1][2] - y2) / clip_height), + ((tracker_KF.tracks[i].bbox_trace[-1][0] - x2) / clip_width, + (tracker_KF.tracks[i].bbox_trace[-1][2] - y2) / clip_height)) + + cv2.putText(image, + mname, + (int(x2) - int(bpy.context.scene.detection_constant_size / 2), + int(y2) - bpy.context.scene.detection_constant_size), cv2.FONT_HERSHEY_SIMPLEX, + 0.4, + track_colors[mname], 2) + if context.scene.tracker_save_video: + video_out.write(image) + cv2.imshow("Live tracking", image) + if cv2.waitKey(1) & 0xFF == ord("q"): + bpy.context.scene.frame_current -= 2 + break + + frame_counter += 1 + + except Exception as e: # work on python 3.x + self.report({'ERROR'}, e) + return {'CANCELLED'} cv2.destroyAllWindows() # always reset frame from capture at the end to avoid incorrect skips during access @@ -595,6 +606,12 @@ class OMNITRAX_OT_PoseEstimationOperator(bpy.types.Operator): default=False) def execute(self, context): + # check the DLC input folder checks out + model_path = bpy.path.abspath(context.scene.pose_network_path) + if not os.path.isdir(model_path): + self.report({'ERROR'}, 'Enter a valid path to a trained and exported DLC model folder') + return {'CANCELLED'} + print("\nRUNNING POSE ESTIMATION\n") # check if any tracks exist for the currently selected clip. If not, run full frame pose estimation @@ -615,7 +632,6 @@ def execute(self, context): if "dlc_proc" not in globals(): from dlclive import DLCLive, Processor try: - model_path = bpy.path.abspath(context.scene.pose_network_path) dlc_proc = Processor() print("Loading DLC Network from", model_path) dlc_live = DLCLive(model_path, processor=dlc_proc, pcutoff=context.scene.pose_pcutoff)