forked from gurkirt/realtime-action-detection
-
Notifications
You must be signed in to change notification settings - Fork 7
/
test-ucf24.py
223 lines (193 loc) · 10.1 KB
/
test-ucf24.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""Adapted from:
@longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch
@rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn
Which was adopated by: Ellis Brown, Max deGroot
https://github.com/amdegroot/ssd.pytorch
Further:
Updated by Gurkirt Singh for ucf101-24 dataset
Licensed under The MIT License [see LICENSE for details]
"""
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from data import AnnotationTransform, UCF24Detection, BaseTransform, CLASSES, detection_collate, v2
from ssd import build_ssd
import torch.utils.data as data
from layers.box_utils import decode, nms
from utils.evaluation import evaluate_detections
import os, time
import argparse
import numpy as np
import pickle
import scipy.io as sio # to save detection as mat files
cfg = v2
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training')
parser.add_argument('--version', default='v2', help='conv11_2(v2) or pool6(v1) as last layer')
parser.add_argument('--basenet', default='vgg16_reducedfc.pth', help='pretrained base model')
parser.add_argument('--dataset', default='ucf24', help='pretrained base model')
parser.add_argument('--ssd_dim', default=300, type=int, help='Input Size for SSD') # only support 300 now
parser.add_argument('--input_type', default='rgb', type=str, help='INput tyep default rgb can take flow as well')
parser.add_argument('--jaccard_threshold', default=0.5, type=float, help='Min Jaccard index for matching')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size for training')
parser.add_argument('--resume', default=None, type=str, help='Resume from checkpoint')
parser.add_argument('--num_workers', default=0, type=int, help='Number of workers used in dataloading')
parser.add_argument('--max_iter', default=90000, type=int, help='Number of training iterations')
parser.add_argument('--eval_iter', default='50000,70000,90000', type=str, help='Number of training iterations')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--ngpu', default=1, type=str2bool, help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float, help='initial learning rate')
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--data_root', default='/mnt/mars-fast/datasets/', help='Location of VOC root directory')
parser.add_argument('--save_root', default='/mnt/mars-gamma/ssd-work/', help='Location to save checkpoint models')
parser.add_argument('--iou_thresh', default=0.5, type=float, help='Evaluation threshold')
parser.add_argument('--conf_thresh', default=0.01, type=float, help='Confidence threshold for evaluation')
parser.add_argument('--nms_thresh', default=0.45, type=float, help='NMS threshold')
parser.add_argument('--topk', default=50, type=int, help='topk for evaluation')
args = parser.parse_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def test_net(net, save_root, exp_name, input_type, dataset, iteration, num_classes, thresh=0.5 ):
""" Test a SSD network on an Action image database. """
val_data_loader = data.DataLoader(dataset, args.batch_size, num_workers=args.num_workers,
shuffle=False, collate_fn=detection_collate, pin_memory=True)
image_ids = dataset.ids
save_ids = []
val_step = 250
num_images = len(dataset)
video_list = dataset.video_list
det_boxes = [[] for _ in range(len(CLASSES))]
gt_boxes = []
print_time = True
batch_iterator = None
count = 0
torch.cuda.synchronize()
ts = time.perf_counter()
num_batches = len(val_data_loader)
det_file = save_root + 'cache/' + exp_name + '/detection-'+str(iteration).zfill(6)+'.pkl'
print('Number of images ', len(dataset),' number of batchs', num_batches)
frame_save_dir = save_root+'detections/CONV-'+input_type+'-'+args.listid+'-'+str(iteration).zfill(6)+'/'
print('\n\n\nDetections will be store in ',frame_save_dir,'\n\n')
for val_itr in range(len(val_data_loader)):
if not batch_iterator:
batch_iterator = iter(val_data_loader)
torch.cuda.synchronize()
t1 = time.perf_counter()
images, targets, img_indexs = next(batch_iterator)
batch_size = images.size(0)
height, width = images.size(2), images.size(3)
if args.cuda:
images = Variable(images.cuda(), volatile=True)
output = net(images)
loc_data = output[0]
conf_preds = output[1]
prior_data = output[2]
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
tf = time.perf_counter()
print('Forward Time {:0.3f}'.format(tf - t1))
for b in range(batch_size):
gt = targets[b].numpy()
gt[:, 0] *= width
gt[:, 2] *= width
gt[:, 1] *= height
gt[:, 3] *= height
gt_boxes.append(gt)
decoded_boxes = decode(loc_data[b].data, prior_data.data, cfg['variance']).clone()
conf_scores = net.softmax(conf_preds[b]).data.clone()
index = img_indexs[b]
annot_info = image_ids[index]
frame_num = annot_info[1]; video_id = annot_info[0]; videoname = video_list[video_id]
output_dir = frame_save_dir+videoname
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
output_file_name = output_dir+'/{:05d}.mat'.format(int(frame_num))
save_ids.append(output_file_name)
sio.savemat(output_file_name, mdict={'scores':conf_scores.cpu().numpy(),'loc':decoded_boxes.cpu().numpy()})
for cl_ind in range(1, num_classes):
scores = conf_scores[:, cl_ind].squeeze()
c_mask = scores.gt(args.conf_thresh) # greater than minmum threshold
scores = scores[c_mask].squeeze()
# print('scores size',scores.size())
if scores.dim() == 0:
# print(len(''), ' dim ==0 ')
det_boxes[cl_ind - 1].append(np.asarray([]))
continue
boxes = decoded_boxes.clone()
l_mask = c_mask.unsqueeze(1).expand_as(boxes)
boxes = boxes[l_mask].view(-1, 4)
# idx of highest scoring and non-overlapping boxes per class
ids, counts = nms(boxes, scores, args.nms_thresh, args.topk) # idsn - ids after nms
scores = scores[ids[:counts]].cpu().numpy()
boxes = boxes[ids[:counts]].cpu().numpy()
# print('boxes sahpe',boxes.shape)
boxes[:, 0] *= width
boxes[:, 2] *= width
boxes[:, 1] *= height
boxes[:, 3] *= height
for ik in range(boxes.shape[0]):
boxes[ik, 0] = max(0, boxes[ik, 0])
boxes[ik, 2] = min(width, boxes[ik, 2])
boxes[ik, 1] = max(0, boxes[ik, 1])
boxes[ik, 3] = min(height, boxes[ik, 3])
cls_dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=True)
det_boxes[cl_ind - 1].append(cls_dets)
count += 1
if val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
print('im_detect: {:d}/{:d} time taken {:0.3f}'.format(count, num_images, te - ts))
torch.cuda.synchronize()
ts = time.perf_counter()
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
print('NMS stuff Time {:0.3f}'.format(te - tf))
print('Evaluating detections for itration number ', iteration)
#Save detection after NMS along with GT
with open(det_file, 'wb') as f:
pickle.dump([gt_boxes, det_boxes, save_ids], f, pickle.HIGHEST_PROTOCOL)
return evaluate_detections(gt_boxes, det_boxes, CLASSES, iou_thresh=thresh)
def main():
means = (104, 117, 123) # only support voc now
exp_name = 'CONV-SSD-{}-{}-bs-{}-{}-lr-{:05d}'.format(args.dataset, args.input_type,
args.batch_size, args.basenet[:-14], int(args.lr * 100000))
args.save_root += args.dataset+'/'
args.data_root += args.dataset+'/'
args.listid = '01' ## would be usefull in JHMDB-21
print('Exp name', exp_name, args.listid)
for iteration in [int(itr) for itr in args.eval_iter.split(',')]:
log_file = open(args.save_root + 'cache/' + exp_name + "/testing-{:d}.log".format(iteration), "w", 1)
log_file.write(exp_name + '\n')
trained_model_path = args.save_root + 'cache/' + exp_name + '/ssd300_ucf24_' + repr(iteration) + '.pth'
log_file.write(trained_model_path+'\n')
num_classes = len(CLASSES) + 1 #7 +1 background
net = build_ssd(300, num_classes) # initialize SSD
net.load_state_dict(torch.load(trained_model_path))
net.eval()
if args.cuda:
net = net.cuda()
cudnn.benchmark = True
print('Finished loading model %d !' % iteration)
# Load dataset
dataset = UCF24Detection(args.data_root, 'test', BaseTransform(args.ssd_dim, means), AnnotationTransform(),
input_type=args.input_type, full_test=True)
# evaluation
torch.cuda.synchronize()
tt0 = time.perf_counter()
log_file.write('Testing net \n')
mAP, ap_all, ap_strs = test_net(net, args.save_root, exp_name, args.input_type, dataset, iteration, num_classes)
for ap_str in ap_strs:
print(ap_str)
log_file.write(ap_str + '\n')
ptr_str = '\nMEANAP:::=>' + str(mAP) + '\n'
print(ptr_str)
log_file.write(ptr_str)
torch.cuda.synchronize()
print('Complete set time {:0.2f}'.format(time.perf_counter() - tt0))
log_file.close()
if __name__ == '__main__':
main()