forked from raspberrypi/pico-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
logic_analyser.c
159 lines (137 loc) · 6.53 KB
/
logic_analyser.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// PIO logic analyser example
//
// This program captures samples from a group of pins, at a fixed rate, once a
// trigger condition is detected (level condition on one pin). The samples are
// transferred to a capture buffer using the system DMA.
//
// 1 to 32 pins can be captured, at a sample rate no greater than system clock
// frequency.
#include <stdio.h>
#include <stdlib.h>
#include "pico/stdlib.h"
#include "hardware/pio.h"
#include "hardware/dma.h"
#include "hardware/structs/bus_ctrl.h"
// Some logic to analyse:
#include "hardware/structs/pwm.h"
const uint CAPTURE_PIN_BASE = 16;
const uint CAPTURE_PIN_COUNT = 2;
const uint CAPTURE_N_SAMPLES = 96;
static inline uint bits_packed_per_word(uint pin_count) {
// If the number of pins to be sampled divides the shift register size, we
// can use the full SR and FIFO width, and push when the input shift count
// exactly reaches 32. If not, we have to push earlier, so we use the FIFO
// a little less efficiently.
const uint SHIFT_REG_WIDTH = 32;
return SHIFT_REG_WIDTH - (SHIFT_REG_WIDTH % pin_count);
}
void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {
// Load a program to capture n pins. This is just a single `in pins, n`
// instruction with a wrap.
uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);
struct pio_program capture_prog = {
.instructions = &capture_prog_instr,
.length = 1,
.origin = -1
};
uint offset = pio_add_program(pio, &capture_prog);
// Configure state machine to loop over this `in` instruction forever,
// with autopush enabled.
pio_sm_config c = pio_get_default_sm_config();
sm_config_set_in_pins(&c, pin_base);
sm_config_set_wrap(&c, offset, offset);
sm_config_set_clkdiv(&c, div);
// Note that we may push at a < 32 bit threshold if pin_count does not
// divide 32. We are using shift-to-right, so the sample data ends up
// left-justified in the FIFO in this case, with some zeroes at the LSBs.
sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count));
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
pio_sm_init(pio, sm, offset, &c);
}
void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t capture_size_words,
uint trigger_pin, bool trigger_level) {
pio_sm_set_enabled(pio, sm, false);
// Need to clear _input shift counter_, as well as FIFO, because there may be
// partial ISR contents left over from a previous run. sm_restart does this.
pio_sm_clear_fifos(pio, sm);
pio_sm_restart(pio, sm);
dma_channel_config c = dma_channel_get_default_config(dma_chan);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, true);
channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));
dma_channel_configure(dma_chan, &c,
capture_buf, // Destination pointer
&pio->rxf[sm], // Source pointer
capture_size_words, // Number of transfers
true // Start immediately
);
pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
pio_sm_set_enabled(pio, sm, true);
}
void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t n_samples) {
// Display the capture buffer in text form, like this:
// 00: __--__--__--__--__--__--
// 01: ____----____----____----
printf("Capture:\n");
// Each FIFO record may be only partially filled with bits, depending on
// whether pin_count is a factor of 32.
uint record_size_bits = bits_packed_per_word(pin_count);
for (int pin = 0; pin < pin_count; ++pin) {
printf("%02d: ", pin + pin_base);
for (int sample = 0; sample < n_samples; ++sample) {
uint bit_index = pin + sample * pin_count;
uint word_index = bit_index / record_size_bits;
// Data is left-justified in each FIFO entry, hence the (32 - record_size_bits) offset
uint word_mask = 1u << (bit_index % record_size_bits + 32 - record_size_bits);
printf(buf[word_index] & word_mask ? "-" : "_");
}
printf("\n");
}
}
int main() {
stdio_init_all();
printf("PIO logic analyser example\n");
// We're going to capture into a u32 buffer, for best DMA efficiency. Need
// to be careful of rounding in case the number of pins being sampled
// isn't a power of 2.
uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT;
total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1;
uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT);
uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t));
hard_assert(capture_buf);
// Grant high bus priority to the DMA, so it can shove the processors out
// of the way. This should only be needed if you are pushing things up to
// >16bits/clk here, i.e. if you need to saturate the bus completely.
bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS;
PIO pio = pio0;
uint sm = 0;
uint dma_chan = 0;
logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);
printf("Arming trigger\n");
logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE, true);
printf("Starting PWM example\n");
// PWM example: -----------------------------------------------------------
gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM);
gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);
// Topmost value of 3: count from 0 to 3 and then wrap, so period is 4 cycles
pwm_hw->slice[0].top = 3;
// Divide frequency by two to slow things down a little
pwm_hw->slice[0].div = 4 << PWM_CH0_DIV_INT_LSB;
// Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
// channel B for 3 cycles (duty cycle 3/4)
pwm_hw->slice[0].cc =
(1 << PWM_CH0_CC_A_LSB) |
(3 << PWM_CH0_CC_B_LSB);
// Enable this PWM slice
pwm_hw->slice[0].csr = PWM_CH0_CSR_EN_BITS;
// ------------------------------------------------------------------------
// The logic analyser should have started capturing as soon as it saw the
// first transition. Wait until the last sample comes in from the DMA.
dma_channel_wait_for_finish_blocking(dma_chan);
print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);
}