forked from raspberrypi/pico-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quadrature_encoder.pio
165 lines (131 loc) · 4.98 KB
/
quadrature_encoder.pio
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
;
; Copyright (c) 2021 pmarques-dev @ github
;
; SPDX-License-Identifier: BSD-3-Clause
;
.program quadrature_encoder
; this code must be loaded into address 0, but at 29 instructions, it probably
; wouldn't be able to share space with other programs anyway
.origin 0
; the code works by running a loop that continuously shifts the 2 phase pins into
; ISR and looks at the lower 4 bits to do a computed jump to an instruction that
; does the proper "do nothing" | "increment" | "decrement" action for that pin
; state change (or no change)
; ISR holds the last state of the 2 pins during most of the code. The Y register
; keeps the current encoder count and is incremented / decremented according to
; the steps sampled
; writing any non zero value to the TX FIFO makes the state machine push the
; current count to RX FIFO between 6 to 18 clocks afterwards. The worst case
; sampling loop takes 14 cycles, so this program is able to read step rates up
; to sysclk / 14 (e.g., sysclk 125MHz, max step rate = 8.9 Msteps/sec)
; 00 state
JMP update ; read 00
JMP decrement ; read 01
JMP increment ; read 10
JMP update ; read 11
; 01 state
JMP increment ; read 00
JMP update ; read 01
JMP update ; read 10
JMP decrement ; read 11
; 10 state
JMP decrement ; read 00
JMP update ; read 01
JMP update ; read 10
JMP increment ; read 11
; to reduce code size, the last 2 states are implemented in place and become the
; target for the other jumps
; 11 state
JMP update ; read 00
JMP increment ; read 01
decrement:
; note: the target of this instruction must be the next address, so that
; the effect of the instruction does not depend on the value of Y. The
; same is true for the "JMP X--" below. Basically "JMP Y--, <next addr>"
; is just a pure "decrement Y" instruction, with no other side effects
JMP Y--, update ; read 10
; this is where the main loop starts
.wrap_target
update:
; we start by checking the TX FIFO to see if the main code is asking for
; the current count after the PULL noblock, OSR will have either 0 if
; there was nothing or the value that was there
SET X, 0
PULL noblock
; since there are not many free registers, and PULL is done into OSR, we
; have to do some juggling to avoid losing the state information and
; still place the values where we need them
MOV X, OSR
MOV OSR, ISR
; the main code did not ask for the count, so just go to "sample_pins"
JMP !X, sample_pins
; if it did ask for the count, then we push it
MOV ISR, Y ; we trash ISR, but we already have a copy in OSR
PUSH
sample_pins:
; we shift into ISR the last state of the 2 input pins (now in OSR) and
; the new state of the 2 pins, thus producing the 4 bit target for the
; computed jump into the correct action for this state
MOV ISR, NULL
IN OSR, 2
IN PINS, 2
MOV PC, ISR
; the PIO does not have a increment instruction, so to do that we do a
; negate, decrement, negate sequence
increment:
MOV X, !Y
JMP X--, increment_cont
increment_cont:
MOV Y, !X
.wrap ; the .wrap here avoids one jump instruction and saves a cycle too
% c-sdk {
#include "hardware/clocks.h"
#include "hardware/gpio.h"
// max_step_rate is used to lower the clock of the state machine to save power
// if the application doesn't require a very high sampling rate. Passing zero
// will set the clock to the maximum, which gives a max step rate of around
// 8.9 Msteps/sec at 125MHz
static inline void quadrature_encoder_program_init(PIO pio, uint sm, uint offset, uint pin, int max_step_rate)
{
pio_sm_set_consecutive_pindirs(pio, sm, pin, 2, false);
gpio_pull_up(pin);
gpio_pull_up(pin + 1);
pio_sm_config c = quadrature_encoder_program_get_default_config(offset);
sm_config_set_in_pins(&c, pin); // for WAIT, IN
sm_config_set_jmp_pin(&c, pin); // for JMP
// shift to left, autopull disabled
sm_config_set_in_shift(&c, false, false, 32);
// don't join FIFO's
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_NONE);
// passing "0" as the sample frequency,
if (max_step_rate == 0) {
sm_config_set_clkdiv(&c, 1.0);
} else {
// one state machine loop takes at most 14 cycles
float div = (float)clock_get_hz(clk_sys) / (14 * max_step_rate);
sm_config_set_clkdiv(&c, div);
}
pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);
}
// When requesting the current count we may have to wait a few cycles (average
// ~11 sysclk cycles) for the state machine to reply. If we are reading multiple
// encoders, we may request them all in one go and then fetch them all, thus
// avoiding doing the wait multiple times. If we are reading just one encoder,
// we can use the "get_count" function to request and wait
static inline void quadrature_encoder_request_count(PIO pio, uint sm)
{
pio->txf[sm] = 1;
}
static inline int32_t quadrature_encoder_fetch_count(PIO pio, uint sm)
{
while (pio_sm_is_rx_fifo_empty(pio, sm))
tight_loop_contents();
return pio->rxf[sm];
}
static inline int32_t quadrature_encoder_get_count(PIO pio, uint sm)
{
quadrature_encoder_request_count(pio, sm);
return quadrature_encoder_fetch_count(pio, sm);
}
%}