description |
---|
Learn how to use upload images, audio, and other files |
Flowise lets you upload images, audio, and other files from the chat. In this section, you'll learn how to enable and use these features.
Certain chat models allow you to input images. Always refer to the official documentation of the LLM to confirm if the model supports image input.
- ChatOpenAI
- AzureChatOpenAI
- ChatAnthropic
- AWSChatBedrock
- ChatGoogleGenerativeAI
- ChatOllama
- Google Vertex AI
{% hint style="warning" %} Image processing only works with certain chains/agents in Chatflow.
LLMChain, Conversation Chain, ReAct Agent, Conversational Agent, Tool Agent {% endhint %}
If you enable Allow Image Upload, you can upload images from the chat interface.
To upload images with the API:
{% tabs %} {% tab title="Python" %}
import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"
def query(payload):
response = requests.post(API_URL, json=payload)
return response.json()
output = query({
"question": "Can you describe the image?",
"uploads": [
{
"data": "", # base64 string or url
"type": "file", # file | url
"name": "Flowise.png",
"mime": "image/png"
}
]
})
{% endtab %}
{% tab title="Javascript" %}
async function query(data) {
const response = await fetch(
"http://localhost:3000/api/v1/prediction/<chatflowid>",
{
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify(data)
}
);
const result = await response.json();
return result;
}
query({
"question": "Can you describe the image?",
"uploads": [
{
"data": "", //base64 string or url
"type": "file", // file | url
"name": "Flowise.png",
"mime": "image/png"
}
]
}).then((response) => {
console.log(response);
});
{% endtab %} {% endtabs %}
In the Chatflow Configuration, you can select a speech-to-text module. Supported integrations include:
- OpenAI
- AssemblyAI
- LocalAI
When this is enabled, users can speak directly into the microphone. Their speech is be transcribed into text.
To upload audio with the API:
{% tabs %} {% tab title="Python" %}
import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"
def query(payload):
response = requests.post(API_URL, json=payload)
return response.json()
output = query({
"uploads": [
{
"data": "data:audio/webm;codecs=opus;base64,GkXf", # base64 string
"type": "audio",
"name": "audio.wav",
"mime": "audio/webm"
}
]
})
{% endtab %}
{% tab title="Javascript" %}
async function query(data) {
const response = await fetch(
"http://localhost:3000/api/v1/prediction/<chatflowid>",
{
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify(data)
}
);
const result = await response.json();
return result;
}
query({
"uploads": [
{
"data": "data:audio/webm;codecs=opus;base64,GkXf", // base64 string
"type": "audio",
"name": "audio.wav",
"mime": "audio/webm"
}
]
}).then((response) => {
console.log(response);
});
{% endtab %} {% endtabs %}
You can upload files in two ways:
- Retrieval augmented generation (RAG) file uploads
- Full file uploads
When both options are on, full file uploads take precedence.
You can upsert uploaded files on the fly to the vector store. To enable file uploads, make sure you meet these prerequisites:
- You must include a vector store that supports file uploads in the chatflow.
- If you have multiple vector stores in a chatflow, you can only turn on file upload for one vector store at a time.
- You must connect at least one document loader node to the vector store's document input.
- Supported document loaders:
You can upload one or more files in the chat:
Here's how it works:
- The metadata for uploaded files is updated with the chatId.
- This associates the file with the chatId.
- When querying, an OR filter applies:
- Metadata contains
flowise_chatId
, and the value is the current chat session ID - Metadata does not contain
flowise_chatId
An example of a vector embedding upserted on Pinecone:
To do this with the API, follow these two steps:
- Use the Vector Upsert API with
formData
andchatId
:
{% tabs %} {% tab title="Python" %}
import requests
API_URL = "http://localhost:3000/api/v1/vector/upsert/<chatflowid>"
# Use form data to upload files
form_data = {
"files": ("state_of_the_union.txt", open("state_of_the_union.txt", "rb"))
}
body_data = {
"chatId": "some-session-id"
}
def query(form_data):
response = requests.post(API_URL, files=form_data, data=body_data)
print(response)
return response.json()
output = query(form_data)
print(output)
{% endtab %}
{% tab title="Javascript" %}
// Use FormData to upload files
let formData = new FormData();
formData.append("files", input.files[0]);
formData.append("chatId", "some-session-id");
async function query(formData) {
const response = await fetch(
"http://localhost:3000/api/v1/vector/upsert/<chatflowid>",
{
method: "POST",
body: formData
}
);
const result = await response.json();
return result;
}
query(formData).then((response) => {
console.log(response);
});
{% endtab %} {% endtabs %}
- Use the Prediction API with
uploads
and thechatId
from step 1:
{% tabs %} {% tab title="Python" %}
import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"
def query(payload):
response = requests.post(API_URL, json=payload)
return response.json()
output = query({
"question": "What is the speech about?",
"chatId": "same-session-id-from-step-1",
"uploads": [
{
"data": "data:text/plain;base64,TWFkYWwcy4=",
"type": "file:rag",
"name": "state_of_the_union.txt",
"mime": "text/plain"
}
]
})
{% endtab %}
{% tab title="Javascript" %}
async function query(data) {
const response = await fetch(
"http://localhost:3000/api/v1/prediction/<chatflowid>",
{
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify(data)
}
);
const result = await response.json();
return result;
}
query({
"question": "What is the speech about?",
"chatId": "same-session-id-from-step-1",
"uploads": [
{
"data": "data:text/plain;base64,TWFkYWwcy4=",
"type": "file:rag",
"name": "state_of_the_union.txt",
"mime": "text/plain"
}
]
}).then((response) => {
console.log(response);
});
{% endtab %} {% endtabs %}
With RAG file uploads, you can't work with structured data like spreadsheets or tables, and you can't perform full summarization due to lack of full context. In some cases, you might want to include all the file content directly in the prompt for an LLM, especially with models like Gemini and Claude that have longer context windows. This research paper is one of many that compare RAG with longer context windows.
To enable full file uploads, go to Chatflow Configuration, open the File Upload tab, and click the switch:
You can see the File Attachment button in the chat, where you can upload one or more files. Under the hood, the File Loader processes each file and converts it into text.
To upload files with the API:
{% tabs %} {% tab title="Python" %}
import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatflowid>"
def query(payload):
response = requests.post(API_URL, json=payload)
return response.json()
output = query({
"question": "What is the data about?",
"chatId": "some-session-id",
"uploads": [
{
"data": "data:text/plain;base64,TWFkYWwcy4=",
"type": "file:full",
"name": "state_of_the_union.txt",
"mime": "text/plain"
}
]
})
{% endtab %}
{% tab title="Javascript" %}
async function query(data) {
const response = await fetch(
"http://localhost:3000/api/v1/prediction/<chatflowid>",
{
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify(data)
}
);
const result = await response.json();
return result;
}
query({
"question": "What is the data about?",
"chatId": "some-session-id",
"uploads": [
{
"data": "data:text/plain;base64,TWFkYWwcy4=",
"type": "file:full",
"name": "state_of_the_union.txt",
"mime": "text/plain"
}
]
}).then((response) => {
console.log(response);
});
{% endtab %} {% endtabs %}
As you can see in the examples, uploads require a base64 string. To get a base64 string for a file, use the Create Attachments API.