-
-
Notifications
You must be signed in to change notification settings - Fork 612
/
basic.jl
174 lines (132 loc) · 4.23 KB
/
basic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
Chain(layers...)
Chain multiple layers / functions together, so that they are called in sequence
on a given input.
```julia
m = Chain(x -> x^2, x -> x+1)
m(5) == 26
m = Chain(Dense(10, 5), Dense(5, 2))
x = rand(10)
m(x) == m[2](m[1](x))
```
`Chain` also supports indexing and slicing, e.g. `m[2]` or `m[1:end-1]`.
`m[1:3](x)` will calculate the output of the first three layers.
"""
struct Chain{T<:Tuple}
layers::T
Chain(xs...) = new{typeof(xs)}(xs)
end
@forward Chain.layers Base.getindex, Base.length, Base.first, Base.last,
Base.iterate, Base.lastindex
children(c::Chain) = c.layers
mapchildren(f, c::Chain) = Chain(f.(c.layers)...)
applychain(::Tuple{}, x) = x
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))
(c::Chain)(x) = applychain(c.layers, x)
Base.getindex(c::Chain, i::AbstractArray) = Chain(c.layers[i]...)
function Base.show(io::IO, c::Chain)
print(io, "Chain(")
join(io, c.layers, ", ")
print(io, ")")
end
activations(c::Chain, x) = accumulate((x, m) -> m(x), c.layers, init = x)
"""
Dense(in::Integer, out::Integer, σ = identity)
Creates a traditional `Dense` layer with parameters `W` and `b`.
y = σ.(W * x .+ b)
The input `x` must be a vector of length `in`, or a batch of vectors represented
as an `in × N` matrix. The out `y` will be a vector or batch of length `out`.
```julia
julia> d = Dense(5, 2)
Dense(5, 2)
julia> d(rand(5))
Tracked 2-element Array{Float64,1}:
0.00257447
-0.00449443
```
"""
struct Dense{F,S,T}
W::S
b::T
σ::F
end
Dense(W, b) = Dense(W, b, identity)
function Dense(in::Integer, out::Integer, σ = identity;
initW = glorot_uniform, initb = zeros)
return Dense(param(initW(out, in)), param(initb(out)), σ)
end
@treelike Dense
function (a::Dense)(x::AbstractArray)
W, b, σ = a.W, a.b, a.σ
σ.(W*x .+ b)
end
function Base.show(io::IO, l::Dense)
print(io, "Dense(", size(l.W, 2), ", ", size(l.W, 1))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
# Try to avoid hitting generic matmul in some simple cases
# Base's matmul is so slow that it's worth the extra conversion to hit BLAS
(a::Dense{<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
(a::Dense{<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
Diagonal(in::Integer)
Creates an element-wise linear transformation layer with learnable
vectors `α` and `β`:
y = α .* x .+ β
The input `x` must be a array where `size(x, 1) == in`.
"""
struct Diagonal{T}
α::T
β::T
end
Diagonal(in::Integer; initα = ones, initβ = zeros) =
Diagonal(param(initα(in)), param(initβ(in)))
@treelike Diagonal
function (a::Diagonal)(x)
α, β = a.α, a.β
α.*x .+ β
end
function Base.show(io::IO, l::Diagonal)
print(io, "Diagonal(", length(l.α), ")")
end
"""
Maxout(over)
`Maxout` is a neural network layer, which has a number of internal layers,
which all have the same input, and the maxout returns the elementwise maximium
of the internal layers' outputs.
Maxout over linear dense layers satisfies the univeral approximation theorem.
Reference:
Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
2013. Maxout networks.
In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 (ICML'13),
Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28. JMLR.org III-1319-III-1327.
https://arxiv.org/pdf/1302.4389.pdf
"""
struct Maxout{FS<:Tuple}
over::FS
end
"""
Maxout(f, n_alts)
Constructs a Maxout layer over `n_alts` instances of the layer given by `f`.
The function takes no arguement and should return some callable layer.
Conventionally this is a linear dense layer.
For example the following example which
will construct a `Maxout` layer over 4 internal dense linear layers,
each identical in structure (784 inputs, 128 outputs).
```julia
insize = 784
outsie = 128
Maxout(()->Dense(insize, outsize), 4)
```
"""
function Maxout(f, n_alts)
over = Tuple(f() for _ in 1:n_alts)
return Maxout(over)
end
@treelike Maxout
function (mo::Maxout)(input::AbstractArray)
mapreduce(f -> f(input), (acc, out) -> max.(acc, out), mo.over)
end