-
-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy patharray.jl
909 lines (776 loc) · 30.2 KB
/
array.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
using Random, FillArrays, AbstractFFTs
using FillArrays: AbstractFill, getindex_value
using Base.Broadcast: broadcasted, broadcast_shape
using Distributed: pmap, AbstractWorkerPool
@adjoint Array(xs::AbstractArray) = Array(xs), ȳ -> (ȳ,)
@adjoint Array(xs::Array) = Array(xs), ȳ -> (ȳ,)
@nograd ones, zeros, Base.OneTo, Colon(), one, zero, sizehint!, count
@adjoint copy(x::AbstractArray) = copy(x), ȳ -> (ȳ,)
@adjoint collect(x::Tuple) = collect(x), dy -> (Tuple(dy),)
@adjoint collect(x::AbstractArray) = collect(x), dy -> (dy,)
# Array Constructors
@adjoint function (::Type{T})(x::Number, sz) where {T <: Fill}
back(Δ::AbstractArray) = (sum(Δ), nothing)
back(Δ::NamedTuple) = (Δ.value, nothing)
return Fill(x, sz), back
end
@adjoint (::Type{T})(sz) where {T<:Zeros} = T(sz), Δ->(nothing,)
@adjoint (::Type{T})(sz) where {T<:Ones} = T(sz), Δ->(nothing,)
@adjoint getindex(x::AbstractArray, inds...) = x[inds...], ∇getindex(x, inds)
@adjoint view(x::AbstractArray, inds...) = view(x, inds...), ∇getindex(x, inds)
∇getindex(x::AbstractArray{T,N}, inds) where {T,N} = dy -> begin
if inds isa NTuple{N,Int} && T <: Number
dx = OneElement(dy, inds, axes(x))
elseif inds isa NTuple{<:Any, Integer}
dx = _zero(x, typeof(dy))
dx[inds...] = dy
else
dx = _zero(x, eltype(dy))
dxv = view(dx, inds...)
dxv .= accum.(dxv, _droplike(dy, dxv))
end
return (dx, map(_->nothing, inds)...)
end
"""
OneElement(val, ind, axes) <: AbstractArray
Extremely simple `struct` used for the gradient of scalar `getindex`.
"""
struct OneElement{T,N,I,A} <: AbstractArray{T,N}
val::T
ind::I
axes::A
OneElement(val::T, ind::I, axes::A) where {T<:Number, I<:NTuple{N,Int}, A} where {N} = new{T,N,I,A}(val, ind, axes)
end
Base.size(A::OneElement) = map(length, A.axes)
Base.axes(A::OneElement) = A.axes
Base.getindex(A::OneElement{T,N}, i::Vararg{Int,N}) where {T,N} = ifelse(i==A.ind, A.val, zero(T))
_zero(xs::AbstractArray{<:Number}, T::Type{Nothing}) = fill!(similar(xs), zero(eltype(xs)))
_zero(xs::AbstractArray{<:Number}, T) = fill!(similar(xs, T), false)
_zero(xs::AbstractArray, T) = fill!(similar(xs, Union{Nothing, T}), nothing)
_droplike(dy, dxv) = dy
_droplike(dy::Union{LinearAlgebra.Adjoint, LinearAlgebra.Transpose}, dxv::AbstractVector) =
dropdims(dy; dims=2)
@adjoint getindex(::Type{T}, xs...) where {T} = T[xs...], dy -> (nothing, dy...)
@adjoint! setindex!(xs::AbstractArray, x...) = setindex!(xs, x...),
_ -> error("Mutating arrays is not supported -- called setindex!(::$(typeof(xs)), _...)")
@adjoint! copyto!(xs, args...) = copyto!(xs, args...),
_ -> error("Mutating arrays is not supported -- called copyto!(::$(typeof(xs)), _...)")
for f in [push!, pop!, pushfirst!, popfirst!]
@eval @adjoint! $f(xs, x...) = $f(xs, x...),
_ -> error("Mutating arrays is not supported -- called $($f)(::$(typeof(xs)), _...)")
end
# This is kind of bad, but at least we don't materialize the whole
# array. Prefer to use `Buffer`
# function _pullback(cx::Context, ::typeof(push!), xs::AbstractVector{<:AbstractArray}, x::AbstractArray{T}...) where T
@adjoint! function push!(xs::AbstractVector{<:AbstractArray}, x::AbstractArray{T}...) where T
sz_xs = size.(xs)
sz_x = size.(x)
push!(xs, x...), Δ -> begin
(Δ, map(x -> Ones{T}(x...), sz_x)...)
end
end
@adjoint! function pop!(xs::AbstractVector{<:AbstractArray{T}}) where T
sz_xs = size.(xs)
op = pop!(xs)
op, Δ -> begin
([Ones{T}(sz...) for sz in sz_xs], )
end
end
# General
@adjoint collect(x::Array) = collect(x), Δ -> (Δ,)
@adjoint permutedims(xs) = permutedims(xs), Δ -> (permutedims(Δ),)
@adjoint permutedims(xs::AbstractVector) = permutedims(xs), Δ -> (vec(permutedims(Δ)),)
@adjoint permutedims(xs, dims) = permutedims(xs, dims),
Δ -> (permutedims(Δ, invperm(dims)), nothing)
@adjoint PermutedDimsArray(xs, dims) = PermutedDimsArray(xs, dims),
Δ -> (PermutedDimsArray(Δ, invperm(dims)), nothing)
@adjoint reshape(xs, dims...) = reshape(xs, dims...),
Δ -> (reshape(Δ, size(xs)),map(_->nothing,dims)...)
@adjoint function hvcat(rows::Tuple{Vararg{Int}}, xs::Number...)
hvcat(rows, xs...), ȳ -> (nothing, permutedims(ȳ)...)
end
pull_block_vert(sz, Δ, A::Number) = Δ[sz]
pull_block_vert(sz, Δ, A::AbstractVector) = Δ[sz-length(A)+1:sz]
pull_block_vert(sz, Δ, A::AbstractMatrix) = Δ[sz-size(A, 1)+1:sz, :]
@adjoint function vcat(A::Union{AbstractVector, AbstractMatrix, Number}...)
sz = cumsum([size.(A, 1)...])
return vcat(A...), Δ->(map(n->pull_block_vert(sz[n], Δ, A[n]), eachindex(A))...,)
end
@adjoint vcat(xs::Number...) = vcat(xs...), Δ -> (Δ...,)
pull_block_horz(sz, Δ, A::AbstractVector) = Δ[:, sz]
pull_block_horz(sz, Δ, A::AbstractMatrix) = Δ[:, sz-size(A, 2)+1:sz]
@adjoint function hcat(A::Union{AbstractVector, AbstractMatrix}...)
sz = cumsum([size.(A, 2)...])
return hcat(A...), Δ->(map(n->pull_block_horz(sz[n], Δ, A[n]), eachindex(A))...,)
end
@adjoint hcat(xs::Number...) = hcat(xs...), Δ -> (Δ...,)
@adjoint function cat(Xs...; dims)
cat(Xs...; dims = dims), Δ -> begin
start = ntuple(_ -> 0, ndims(Δ))
catdims = Base.dims2cat(dims)
dXs = map(Xs) do x
move = ntuple(d -> (d<=length(catdims) && catdims[d]) ? size(x,d) : 0, ndims(Δ))
x_in_Δ = ntuple(d -> (d<=length(catdims) && catdims[d]) ? (start[d]+1:start[d]+move[d]) : Colon(), ndims(Δ))
start = start .+ move
dx = Δ[x_in_Δ...]
end
end
end
@adjoint function repeat(xs; inner=ntuple(_->1, ndims(xs)), outer=ntuple(_->1, ndims(xs)))
repeat(xs, inner = inner, outer = outer), function (Δ)
Δ′ = zero(xs)
S = size(xs)
# Loop through each element of Δ, calculate source dimensions, accumulate into Δ′
for (dest_idx, val) in pairs(IndexCartesian(), Δ)
# First, round dest_idx[dim] to nearest gridpoint defined by inner[dim], then
# wrap around based on original size S.
src_idx = [mod1(div(dest_idx[dim] - 1, inner[dim]) + 1, S[dim]) for dim in 1:length(S)]
Δ′[src_idx...] += val
end
return (Δ′,)
end
end
@adjoint repeat(x::AbstractVector, m::Integer) =
repeat(x, m), ȳ -> (dropdims(sum(reshape(ȳ, length(x), :); dims=2); dims=2), nothing)
@adjoint function repeat(x::AbstractVecOrMat, m::Integer, n::Integer=1)
return repeat(x, m, n), function (ȳ)
ȳ′ = reshape(ȳ, size(x,1), m, size(x,2), n)
return reshape(sum(ȳ′; dims=(2,4)), size(x)), nothing, nothing
end
end
@adjoint getindex(i::Int, j::Int) = i[j], _ -> nothing
struct StaticGetter{i} end
(::StaticGetter{i})(v) where {i} = v[i]
(::StaticGetter{i})(::Nothing) where {i} = nothing
@generated function _unzip(tuples, ::Val{N}) where {N}
Expr(:tuple, (:(map($(StaticGetter{i}()), tuples)) for i ∈ 1:N)...)
end
function unzip(tuples)
N = length(first(tuples))
_unzip(tuples, Val(N))
end
# Reverse iteration order when ∇map is applied to vector,
# needed for stateful functions.
# See https://github.com/FluxML/Flux.jl/issues/1209
# Should be generalized to abstract array, but reverse takes a dims keyword there
_tryreverse(m, backs, Δ) = backs, Δ
function _tryreverse(m::typeof(map), backs, Δ::Union{AbstractVector, Tuple})
return reverse(backs), reverse(Δ)
end
_tryreverse(m, x) = x
_tryreverse(m::typeof(map), x::Union{AbstractVector, Tuple}) = reverse(x)
for (mapfunc,∇mapfunc) in [(:map,:∇map),(:pmap,:∇pmap)]
@eval function $∇mapfunc(cx, f::F, args...) where {F}
ys_and_backs = $mapfunc((args...) -> _pullback(cx, f, args...), args...)
if isempty(ys_and_backs)
ys_and_backs, _ -> nothing
else
ys = map(first, ys_and_backs)
ys, function (Δ)
isnothing(Δ) && return nothing
if Base.issingletontype(F) && length(args) == 1
Δarg = $mapfunc(((_,pb), δ) -> last(pb(δ)), ys_and_backs, Δ) # No unzip needed
(nothing, Δarg)
elseif Base.issingletontype(F) # Ensures `f` is pure: nothing captured & no state
Δargs = unzip($mapfunc(((_,pb), δ) -> Base.tail(pb(δ)), ys_and_backs, Δ))
(nothing, Δargs...)
else
# Apply pullbacks in reverse order. Needed for correctness if `f` is stateful.
Δf_and_args_zipped = $mapfunc(((_,pb), δ) -> pb(δ), _tryreverse($mapfunc, ys_and_backs, Δ)...)
Δf_and_args = unzip(_tryreverse($mapfunc, Δf_and_args_zipped))
Δf = reduce(accum, Δf_and_args[1])
(Δf, Δf_and_args[2:end]...)
end
end
end
end
@eval @adjoint function $mapfunc(f, args::Union{AbstractArray,Tuple}...)
$∇mapfunc(__context__, f, args...)
end
end
@adjoint function pmap(f, wp::AbstractWorkerPool, args...; kwargs...)
ys_backs = pmap((x...) -> _pullback(__context__, f, x...), wp, args...; kwargs...)
ys, backs = unzip(ys_backs)
ys, function (Δ)
res = pmap((df,d) -> df(d), wp, backs, Δ; kwargs...)
Δf_and_args = unzip(res)
Δf = reduce(accum, Δf_and_args[1])
(Δf, nothing, Δf_and_args[2:end]..., nothing, nothing)
end
end
for t in subtypes(AbstractWorkerPool)
@nograd t
end
@nograd workers
function _pullback(cx::AContext, ::typeof(collect), g::Base.Generator)
y, b = ∇map(cx, g.f, g.iter)
back(::Nothing) = nothing
function back(ȳ)
f̄, x̄ = b(ȳ)
(nothing, (f = f̄, iter = x̄),)
end
y, back
end
@adjoint iterate(r::UnitRange, i...) = iterate(r, i...), _ -> nothing
@adjoint function sort(x::AbstractArray; by=identity)
p = sortperm(x, by=by)
return x[p], x̄ -> (x̄[invperm(p)],)
end
@adjoint function filter(f, x::AbstractVector)
t = map(f, x)
x[t], Δ -> begin
dx = _zero(x, eltype(Δ))
dx[t] .= Δ
(nothing, dx)
end
end
# Reductions
@adjoint function sum(xs::AbstractArray; dims = :)
if dims === (:)
sum(xs), Δ -> (Fill(Δ, size(xs)),)
else
sum(xs, dims = dims), Δ -> (similar(xs) .= Δ,)
end
end
@adjoint function sum(f, xs::AbstractArray{<:AbstractArray}; kws...)
@assert !haskey(kws, :init) # TODO add init support (julia 1.6)
return pullback(__context__, (f, xs) -> sum(f.(xs); kws...), f, xs)
end
@adjoint function sum(xs::AbstractArray{Bool}; dims = :)
sum(xs, dims = dims), Δ -> (nothing,)
end
function _pullback(cx::AContext, ::typeof(prod), f, xs::AbstractArray)
y, back = pullback(cx, ((f, xs) -> prod(f.(xs))), f, xs)
y, ȳ -> (nothing, back(ȳ)...)
end
@adjoint function maximum(xs::AbstractArray; dims = :)
max, i = findmax(xs, dims = dims)
max, function (Δ)
Δ isa Real && abs(Δ) <= sqrt(eps(float(Δ))) && return nothing
Δ′ = zero(xs)
Δ′[i] = Δ
return (Δ′,)
end
end
@adjoint function minimum(xs::AbstractArray; dims = :)
min, i = findmin(xs, dims = dims)
min, function (Δ)
Δ′ = zero(xs)
Δ′[i] = Δ
return (Δ′,)
end
end
@adjoint function dropdims(xs::AbstractArray; dims)
dropdims(xs, dims = dims), Δ -> (reshape(Δ, size(xs)...),)
end
@adjoint real(x::AbstractArray) = real(x), r̄ -> (real(r̄),)
@adjoint conj(x::AbstractArray) = conj(x), r̄ -> (conj(r̄),)
@adjoint imag(x::AbstractArray) = imag(x), ī -> (complex.(0, real.(ī)),)
@adjoint function mean(xs::AbstractArray; dims = :)
return mean(xs, dims=dims), Δ -> (_backmean(xs,Δ,dims),)
end
_backmean(xs, Δ, ::Colon) = zero(xs) .+ Δ ./ length(xs)
_backmean(xs, Δ, dims) = zero(xs) .+ Δ ./ mapreduce(i -> size(xs,i),*,dims)
@adjoint function Statistics.var(xs::AbstractArray; corrected::Bool=true, dims=:, mean=mean(xs, dims=dims))
return Statistics.var(xs; corrected=corrected, mean=mean, dims=dims), Δ -> _backvar(xs, Δ, corrected, mean, dims)
end
_backvar(xs, Δ, corrected::Bool, mean, dims) = _backvar(xs, Δ, mapreduce(i -> size(xs,i),*,dims) - corrected, mean)
_backvar(xs, Δ, corrected::Bool, mean, ::Colon) = _backvar(xs, Δ, length(xs) - corrected, mean)
_backvar(xs, Δ, N::Int, mean) = (convert(eltype(xs), 2/N) .* Δ .* (xs .- mean),)
@adjoint function Statistics.std(xs::AbstractArray; corrected::Bool=true, dims=:, mean=mean(xs, dims=dims))
s = Statistics.std(xs; corrected=corrected, mean=mean, dims=dims)
return s, Δ -> _backvar(xs, Δ ./ (2 .* s), corrected, mean, dims)
end
@adjoint function cumsum(xs::AbstractVector; dims::Integer = 1)
dims == 1 || return copy(xs), Δ -> (Δ,)
cumsum(xs), Δ -> (reverse(cumsum(reverse(Δ))),)
end
@adjoint function cumsum(xs::AbstractArray; dims::Integer)
dims <= ndims(xs) || return copy(xs), Δ -> (Δ,)
cumsum(xs; dims=dims), Δ -> begin
(reverse(cumsum(reverse(Δ, dims=dims), dims=dims), dims=dims),)
end
end
@adjoint eachrow(x::AbstractVecOrMat) = collect(eachrow(x)), dys -> ∇eachslice(dys, x, 1)
@adjoint eachcol(x::AbstractVecOrMat) = collect(eachcol(x)), dys -> ∇eachslice(dys, x, 2)
@adjoint eachslice(x::AbstractArray; dims::Integer) =
collect(eachslice(x; dims=dims)), dys -> ∇eachslice(dys, x, dims)
function ∇eachslice(dys, x::AbstractArray, dim::Integer) where {TX}
i1 = findfirst(dy -> dy isa AbstractArray, dys)
i1 === nothing && return (zero(x),) # all slices get nothing
T = promote_type(eltype(dys[i1]), eltype(x))
dx = similar(x, T)
for i in axes(x, dim)
if dys[i] isa AbstractArray
copyto!(selectdim(dx,dim,i), dys[i])
else
selectdim(dx,dim,i) .= 0
end
end
(dx,)
end
# LinearAlgebra
# =============
@adjoint function transpose(x)
back(Δ) = (transpose(Δ),)
back(Δ::NamedTuple{(:parent,)}) = (Δ.parent,)
return transpose(x), back
end
@adjoint function LinearAlgebra.Transpose(x)
back(Δ) = (LinearAlgebra.Transpose(Δ),)
back(Δ::NamedTuple{(:parent,)}) = (Δ.parent,)
return LinearAlgebra.Transpose(x), back
end
@adjoint function Base.adjoint(x)
back(Δ) = (Δ',)
back(Δ::NamedTuple{(:parent,)}) = (Δ.parent,)
return x', back
end
@adjoint function LinearAlgebra.Adjoint(x)
back(Δ) = (LinearAlgebra.Adjoint(Δ),)
back(Δ::NamedTuple{(:parent,)}) = (Δ.parent,)
return LinearAlgebra.Adjoint(x), back
end
@adjoint parent(x::LinearAlgebra.Adjoint) = parent(x), ȳ -> (LinearAlgebra.Adjoint(ȳ),)
@adjoint parent(x::LinearAlgebra.Transpose) = parent(x), ȳ -> (LinearAlgebra.Transpose(ȳ),)
function _kron(mat1::AbstractMatrix,mat2::AbstractMatrix)
m1, n1 = size(mat1)
mat1_rsh = reshape(mat1,(1,m1,1,n1))
m2, n2 = size(mat2)
mat2_rsh = reshape(mat2,(m2,1,n2,1))
return reshape(mat1_rsh.*mat2_rsh, (m1*m2,n1*n2))
end
@adjoint kron(a::AbstractMatrix, b::AbstractMatrix) = pullback(_kron, a, b)
@adjoint logabsdet(xs::AbstractMatrix) = logabsdet(xs), Δ -> (Δ[1] * inv(xs)',)
@adjoint function inv(A::Union{Number, AbstractMatrix})
Ainv = inv(A)
return Ainv, function (Δ)
∇A = - Ainv' * Δ * Ainv'
return (∇A, )
end
end
# Defaults for atol and rtol copied directly from LinearAlgebra. See the following for
# derivation:
# Golub, Gene H., and Victor Pereyra. "The differentiation of pseudo-inverses and nonlinear
# least squares problems whose variables separate." SIAM Journal on numerical analysis 10.2
# (1973): 413-432.
@adjoint function pinv(
A::AbstractMatrix{T};
atol::Real = 0.0,
rtol::Real = (eps(real(float(one(T))))*min(size(A)...))*iszero(atol),
) where {T}
Y = pinv(A)
return Y, Δ->(-Y' * Δ * Y' + (I - A * Y) * Δ' * Y * Y' + Y' * Y * Δ' * (I - Y * A),)
end
# When `A` is guaranteed to be square, definitely use the simple expression for the adjoint.
@adjoint function \(
A::Union{
Diagonal,
AbstractTriangular,
LinearAlgebra.Adjoint{<:Any, <:AbstractTriangular},
Transpose{<:Any, <:AbstractTriangular},
},
B::AbstractVecOrMat,
)
Y = A \ B
return Y, function(Ȳ)
B̄ = A' \ Ȳ
return (-B̄ * Y', B̄)
end
end
@adjoint function /(A::AbstractMatrix, B::Union{Diagonal, AbstractTriangular})
Y = A / B
return Y, function(Ȳ)
Ā = Ȳ / B'
return (Ā, -Y' * Ā)
end
end
@adjoint function \(A::AbstractMatrix, B::AbstractVecOrMat)
Z = A \ B
return Z, function(Z̄)
B̄ = A' \ Z̄
if size(A, 1) == size(A, 2)
return (-B̄ * Z', B̄)
else
a = -B̄ * Z'
b = (B - A * Z) * B̄' / A'
c = A' \ Z * (Z̄' - B̄' * A)
return (a + b + c, B̄)
end
end
end
# LinAlg Matrix Types
# ===================
@adjoint LinearAlgebra.LowerTriangular(A) = LowerTriangular(A), Δ->(LowerTriangular(Δ),)
@adjoint LinearAlgebra.UpperTriangular(A) = UpperTriangular(A), Δ->(UpperTriangular(Δ),)
@adjoint LinearAlgebra.UnitLowerTriangular(A) = UnitLowerTriangular(A), Δ->(UnitLowerTriangular(Δ)-I,)
@adjoint LinearAlgebra.UnitUpperTriangular(A) = UnitUpperTriangular(A), Δ->(UnitUpperTriangular(Δ)-I,)
# This is basically a hack while we don't have a working `ldiv!`.
@adjoint function \(A::Cholesky, B::AbstractVecOrMat)
Y, back = Zygote.pullback((U, B)->U \ (U' \ B), A.U, B)
return Y, function(Ȳ)
Ā_factors, B̄ = back(Ȳ)
return ((uplo=nothing, info=nothing, factors=Ā_factors), B̄)
end
end
function _symmetric_back(Δ, uplo)
L, U, D = LowerTriangular(Δ), UpperTriangular(Δ), Diagonal(Δ)
return uplo == 'U' ? U .+ transpose(L) - D : L .+ transpose(U) - D
end
_symmetric_back(Δ::Diagonal, uplo) = Δ
_symmetric_back(Δ::UpperTriangular, uplo) = collect(uplo == 'U' ? Δ : transpose(Δ))
_symmetric_back(Δ::LowerTriangular, uplo) = collect(uplo == 'U' ? transpose(Δ) : Δ)
@adjoint function Symmetric(A::AbstractMatrix, uplo=:U)
S = Symmetric(A, uplo)
back(Δ::AbstractMatrix) = (_symmetric_back(Δ, S.uplo), nothing)
back(Δ::NamedTuple) = (_symmetric_back(Δ.data, S.uplo), nothing)
return S, back
end
_extract_imag(x) = (x->complex(0, imag(x))).(x)
function _hermitian_back(Δ, uplo)
isreal(Δ) && return _symmetric_back(Δ, uplo)
L, U, rD = LowerTriangular(Δ), UpperTriangular(Δ), real.(Diagonal(Δ))
return uplo == 'U' ? U .+ L' - rD : L .+ U' - rD
end
_hermitian_back(Δ::Diagonal, uplo) = real.(Δ)
function _hermitian_back(Δ::LinearAlgebra.AbstractTriangular, uplo)
isreal(Δ) && return _symmetric_back(Δ, uplo)
ŪL̄ = Δ .- Diagonal(_extract_imag(diag(Δ)))
if istriu(Δ)
return collect(uplo == 'U' ? ŪL̄ : ŪL̄')
else
return collect(uplo == 'U' ? ŪL̄' : ŪL̄)
end
end
@adjoint function LinearAlgebra.Hermitian(A::AbstractMatrix, uplo=:U)
H = Hermitian(A, uplo)
back(Δ::AbstractMatrix) = (_hermitian_back(Δ, H.uplo), nothing)
back(Δ::NamedTuple) = (_hermitian_back(Δ.data, H.uplo), nothing)
return H, back
end
@adjoint convert(::Type{R}, A::LinearAlgebra.HermOrSym{T,S}) where {T,S,R<:Array} = convert(R, A),
Δ -> (nothing, convert(S, Δ),)
@adjoint Matrix(A::LinearAlgebra.HermOrSym{T,S}) where {T,S} = Matrix(A),
Δ -> (convert(S, Δ),)
@adjoint function cholesky(Σ::Real)
C = cholesky(Σ)
return C, Δ::NamedTuple->(Δ.factors[1, 1] / (2 * C.U[1, 1]),)
end
@adjoint function cholesky(Σ::Diagonal; check = true)
C = cholesky(Σ, check = check)
return C, Δ::NamedTuple -> begin
issuccess(C) || throw(PosDefException(C.info))
return Diagonal(diag(Δ.factors) .* inv.(2 .* C.factors.diag)), nothing
end
end
# Implementation due to Seeger, Matthias, et al. "Auto-differentiating linear algebra."
@adjoint function cholesky(Σ::Union{StridedMatrix, Symmetric{<:Real, <:StridedMatrix}}; check = true)
C = cholesky(Σ, check = check)
return C, function(Δ::NamedTuple)
issuccess(C) || throw(PosDefException(C.info))
U, Ū = C.U, Δ.factors
Σ̄ = similar(U.data)
Σ̄ = mul!(Σ̄, Ū, U')
Σ̄ = copytri!(Σ̄, 'U')
Σ̄ = ldiv!(U, Σ̄)
Σ̄ = BLAS.trsm!('R', 'U', 'T', 'N', one(eltype(Σ)), U.data, Σ̄)
Σ̄[diagind(Σ̄)] ./= 2
return (UpperTriangular(Σ̄),)
end
end
@adjoint function lyap(A::AbstractMatrix, C::AbstractMatrix)
X = lyap(A, C)
return X, function (X̄)
C̄ = lyap(collect(A'), X̄)
Ā = C̄*X' + C̄'*X
return (Ā, C̄)
end
end
# Matrix of pairwise difference quotients
Base.@propagate_inbounds function _pairdiffquot(f, i, j, x, fx, dfx, d²fx = nothing)
i == j && return dfx[i]
Δx = x[i] - x[j]
T = real(eltype(x))
if d²fx === nothing
abs(Δx) ≤ sqrt(eps(T)) && return (dfx[i] + dfx[j]) / 2
else
abs(Δx) ≤ eps(T)^(1/3) && return dfx[i] - Δx / 2 * d²fx[i]
end
Δfx = fx[i] - fx[j]
return Δfx / Δx
end
Base.@propagate_inbounds function _pairdiffquotmat(f, n, x, fx, dfx, d²fx = nothing)
Δfij = (i, j)->_pairdiffquot(f, i, j, x, fx, dfx, d²fx)
return Δfij.(Base.OneTo(n), Base.OneTo(n)')
end
# Hermitian/Symmetric matrix functions that can be written as power series
_realifydiag!(A::AbstractArray{<:Real}) = A
function _realifydiag!(A)
n = LinearAlgebra.checksquare(A)
for i in 1:n
@inbounds A[i,i] = real(A[i,i])
end
return A
end
@adjoint _realifydiag!(A) = _realifydiag!(A), Δ -> (_realifydiag!(Δ),)
_hasrealdomain(::typeof(^), x) = all(x -> x ≥ 0, x)
_process_series_eigvals(f, λ) = _hasrealdomain(f, λ) ? λ : complex.(λ)
_process_series_matrix(f, fA, A, fλ) = fA
_process_series_matrix(f, fA, ::LinearAlgebra.HermOrSym{<:Real}, fλ) = Symmetric(fA)
_process_series_matrix(f, fA, ::Hermitian{<:Complex}, ::AbstractVector{<:Real}) =
Hermitian(_realifydiag!(fA))
_process_series_matrix(::typeof(^), fA, ::Hermitian{<:Real}, fλ) = Hermitian(fA)
_process_series_matrix(::typeof(^), fA, ::Hermitian{<:Real}, ::AbstractVector{<:Complex}) = fA
_process_series_matrix(::typeof(^), fA, ::Hermitian{<:Complex}, ::AbstractVector{<:Complex}) = fA
# Compute function on eigvals, thunks for conjugates of 1st and 2nd derivatives,
# and function to pull back adjoints to args
function _pullback_series_func_scalar(f::typeof(^), λ, p)
compλ = _process_series_eigvals(f, λ)
r, powλ = isinteger(p) ? (Integer(p), λ) : (p, compλ)
fλ = powλ .^ r
return (fλ,
()->conj.(r .* powλ .^ (r - 1)),
()->conj.((r * (r - 1)) .* powλ .^ (r - 2)),
f̄λ -> (dot(fλ .* log.(compλ), f̄λ),))
end
_apply_series_func(f, A, args...) = f(A, args...)
@adjoint function _apply_series_func(f, A, args...)
hasargs = !isempty(args)
n = LinearAlgebra.checksquare(A)
λ, U = eigen(A)
fλ, dfthunk, d²fthunk, argsback = _pullback_series_func_scalar(f, λ, args...)
fΛ = Diagonal(fλ)
fA = U * fΛ * U'
Ω = _process_series_matrix(f, fA, A, fλ)
return Ω, function (f̄A)
f̄Λ = U' * f̄A * U
ārgs = hasargs ? argsback(diag(f̄Λ)) : ()
P = _pairdiffquotmat(f, n, λ, conj(fλ), dfthunk(), d²fthunk())
Ā = U * (P .* f̄Λ) * U'
return (nothing, Ā, ārgs...)
end
end
_hermsympow(A::Symmetric, p::Integer) = LinearAlgebra.sympow(A, p)
_hermsympow(A::Hermitian, p::Integer) = A^p
@adjoint function _hermsympow(A::Hermitian, p::Integer)
if p < 0
B, back = Zygote.pullback(A->Base.power_by_squaring(inv(A), -p), A)
else
B, back = Zygote.pullback(A->Base.power_by_squaring(A, p), A)
end
Ω = Hermitian(_realifydiag!(B))
return Ω, function (Ω̄)
B̄ = _hermitian_back(Ω̄, 'U')
Ā = back(B̄)[1]
return (Ā, nothing)
end
end
_pullback(cx::AContext, ::typeof(^), A::LinearAlgebra.HermOrSym{<:Real}, p::Integer) =
_pullback(cx, _hermsympow, A, p)
_pullback(cx::AContext, ::typeof(^), A::Symmetric{<:Complex}, p::Integer) =
_pullback(cx, _hermsympow, A, p)
_pullback(cx::AContext, ::typeof(^), A::Hermitian{<:Complex}, p::Integer) =
_pullback(cx, _hermsympow, A, p)
function _pullback(cx::AContext,
f::typeof(^),
A::LinearAlgebra.RealHermSymComplexHerm,
p::Real)
return _pullback(cx, (A, p) -> _apply_series_func(f, A, p), A, p)
end
# ChainRules has this also but does not use FillArrays, so we have our own definition
# for improved performance. See https://github.com/JuliaDiff/ChainRules.jl/issues/46
Zygote.@adjoint function LinearAlgebra.tr(x::AbstractMatrix)
# x is a squre matrix checked by tr,
# so we could just use Eye(size(x, 1))
# to create a Diagonal
tr(x), function (Δ::Number)
(Diagonal(Fill(Δ, (size(x, 1), ))), )
end
end
# Various sensitivities for `literal_getproperty`, depending on the 2nd argument.
@adjoint function literal_getproperty(C::Cholesky, ::Val{:uplo})
return literal_getproperty(C, Val(:uplo)), function(Δ)
return ((uplo=nothing, info=nothing, factors=nothing),)
end
end
@adjoint function literal_getproperty(C::Cholesky, ::Val{:info})
return literal_getproperty(C, Val(:info)), function(Δ)
return ((uplo=nothing, info=nothing, factors=nothing),)
end
end
@adjoint function literal_getproperty(C::Cholesky, ::Val{:U})
return literal_getproperty(C, Val(:U)), function(Δ)
Δ_factors = C.uplo == 'U' ? UpperTriangular(Δ) : LowerTriangular(copy(Δ'))
return ((uplo=nothing, info=nothing, factors=Δ_factors),)
end
end
@adjoint function literal_getproperty(C::Cholesky, ::Val{:L})
return literal_getproperty(C, Val(:L)), function(Δ)
Δ_factors = C.uplo == 'L' ? LowerTriangular(Δ) : UpperTriangular(copy(Δ'))
return ((uplo=nothing, info=nothing, factors=Δ_factors),)
end
end
@adjoint function logdet(C::Cholesky)
return logdet(C), function(Δ)
return ((uplo=nothing, info=nothing, factors=Diagonal(2 .* Δ ./ diag(C.factors))),)
end
end
@adjoint function Matrix(S::UniformScaling, i::Integer, j::Integer)
return Matrix(S, i, j), Δ -> ((λ=tr(Δ),), nothing, nothing)
end
@adjoint function Matrix(S::UniformScaling, ij::NTuple{2, Integer})
return Matrix(S, ij), Δ -> ((λ=tr(Δ),), nothing)
end
@adjoint function Matrix{T}(S::UniformScaling, i::Integer, j::Integer) where {T}
return Matrix{T}(S, i, j), Δ -> ((λ=tr(Δ),), nothing, nothing)
end
@adjoint function Matrix{T}(S::UniformScaling, ij::NTuple{2, Integer}) where {T}
return Matrix{T}(S, ij), Δ -> ((λ=tr(Δ),), nothing)
end
@adjoint function +(A::AbstractMatrix, S::UniformScaling)
return A + S, Δ->(Δ, (λ=tr(Δ),))
end
@adjoint function -(S::UniformScaling, A::AbstractMatrix)
return S - A, Δ->((λ=tr(Δ),), -Δ)
end
@adjoint +(A::AbstractArray, B::AbstractArray) = A + B, Δ->(Δ, Δ)
@adjoint -(A::AbstractArray, B::AbstractArray) = A - B, Δ->(Δ, -Δ)
@adjoint -(A::AbstractArray) = -A, Δ->(-Δ,)
# Abstract FFT
# ===================
# AbstractFFTs functions do not work with FillArrays, which are needed
# for some functionality of Zygote. To make it work with FillArrays
# as well, overload the relevant functions
AbstractFFTs.fft(x::Fill, dims...) = AbstractFFTs.fft(collect(x), dims...)
AbstractFFTs.bfft(x::Fill, dims...) = AbstractFFTs.bfft(collect(x), dims...)
AbstractFFTs.ifft(x::Fill, dims...) = AbstractFFTs.ifft(collect(x), dims...)
AbstractFFTs.rfft(x::Fill, dims...) = AbstractFFTs.rfft(collect(x), dims...)
AbstractFFTs.irfft(x::Fill, d, dims...) = AbstractFFTs.irfft(collect(x), d, dims...)
AbstractFFTs.brfft(x::Fill, d, dims...) = AbstractFFTs.brfft(collect(x), d, dims...)
# the adjoint jacobian of an FFT with respect to its input is the reverse FFT of the
# gradient of its inputs, but with different normalization factor
@adjoint function fft(xs)
return AbstractFFTs.fft(xs), function(Δ)
return (AbstractFFTs.bfft(Δ),)
end
end
@adjoint function *(P::AbstractFFTs.Plan, xs)
return P * xs, function(Δ)
N = prod(size(xs)[[P.region...]])
return (nothing, N * (P \ Δ))
end
end
@adjoint function \(P::AbstractFFTs.Plan, xs)
return P \ xs, function(Δ)
N = prod(size(Δ)[[P.region...]])
return (nothing, (P * Δ)/N)
end
end
# all of the plans normalize their inverse, while we need the unnormalized one.
@adjoint function ifft(xs)
return AbstractFFTs.ifft(xs), function(Δ)
N = length(xs)
return (AbstractFFTs.fft(Δ)/N,)
end
end
@adjoint function bfft(xs)
return AbstractFFTs.bfft(xs), function(Δ)
return (AbstractFFTs.fft(Δ),)
end
end
@adjoint function fftshift(x)
return fftshift(x), function(Δ)
return (ifftshift(Δ),)
end
end
@adjoint function ifftshift(x)
return ifftshift(x), function(Δ)
return (fftshift(Δ),)
end
end
# to actually use rfft, one needs to insure that everything
# that happens in the Fourier domain could've been done in
# the space domain with real numbers. This means enforcing
# conjugate symmetry along all transformed dimensions besides
# the first. Otherwise this is going to result in *very* weird
# behavior.
@adjoint function rfft(xs::AbstractArray{<:Real})
return AbstractFFTs.rfft(xs), function(Δ)
N = length(Δ)
originalSize = size(xs,1)
return (AbstractFFTs.brfft(Δ, originalSize),)
end
end
@adjoint function irfft(xs, d)
return AbstractFFTs.irfft(xs, d), function(Δ)
total = length(Δ)
fullTransform = AbstractFFTs.rfft(real.(Δ))/total
return (fullTransform, nothing)
end
end
@adjoint function brfft(xs, d)
return AbstractFFTs.brfft(xs, d), function(Δ)
fullTransform = AbstractFFTs.rfft(real.(Δ))
return (fullTransform, nothing)
end
end
# if we're specifying the dimensions
@adjoint function fft(xs, dims)
return AbstractFFTs.fft(xs, dims), function(Δ)
# dims can be int, array or tuple,
# convert to collection for use as index
dims = collect(dims)
return (AbstractFFTs.bfft(Δ, dims), nothing)
end
end
@adjoint function bfft(xs, dims)
return AbstractFFTs.ifft(xs, dims), function(Δ)
dims = collect(dims)
return (AbstractFFTs.fft(Δ, dims),nothing)
end
end
@adjoint function ifft(xs, dims)
return AbstractFFTs.ifft(xs, dims), function(Δ)
dims = collect(dims)
N = prod(collect(size(xs))[dims])
return (AbstractFFTs.fft(Δ, dims)/N,nothing)
end
end
@adjoint function rfft(xs, dims)
return AbstractFFTs.rfft(xs, dims), function(Δ)
dims = collect(dims)
N = prod(collect(size(xs))[dims])
return (N * AbstractFFTs.irfft(Δ, size(xs,dims[1]), dims), nothing)
end
end
@adjoint function irfft(xs, d, dims)
return AbstractFFTs.irfft(xs, d, dims), function(Δ)
dims = collect(dims)
N = prod(collect(size(xs))[dims])
return (AbstractFFTs.rfft(real.(Δ), dims)/N, nothing, nothing)
end
end
@adjoint function brfft(xs, d, dims)
return AbstractFFTs.brfft(xs, d, dims), function(Δ)
dims = collect(dims)
return (AbstractFFTs.rfft(real.(Δ), dims), nothing, nothing)
end
end
@adjoint function fftshift(x, dims)
return fftshift(x), function(Δ)
return (ifftshift(Δ, dims), nothing)
end
end
@adjoint function ifftshift(x, dims)
return ifftshift(x), function(Δ)
return (fftshift(Δ, dims), nothing)
end
end
# FillArray functionality
# =======================
@adjoint function broadcasted(op, r::AbstractFill{<:Real})
y, _back = Zygote.pullback(op, getindex_value(r))
back(Δ::AbstractFill) = (nothing, Fill(_back(getindex_value(Δ))[1], size(r)))
back(Δ::AbstractArray) = (nothing, getindex.(_back.(Δ), 1))
return Fill(y, size(r)), back
end