-
Notifications
You must be signed in to change notification settings - Fork 19
/
uNavINS.h
233 lines (221 loc) · 9.61 KB
/
uNavINS.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
uNavINS.h
Original Author:
Adhika Lie
2012-10-08
University of Minnesota
Aerospace Engineering and Mechanics
Copyright 2011 Regents of the University of Minnesota. All rights reserved.
Updated to be a class, use Eigen, and compile as an Arduino library.
Added methods to get gyro and accel bias. Added initialization to
estimated angles rather than assuming IMU is level. Added method to get psi,
rather than just heading, and ground track.
Brian R Taylor
brian.taylor@bolderflight.com
2017-12-20
Bolder Flight Systems
Copyright 2017 Bolder Flight Systems
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// XXX - accel and gyro bias not being updated.
// XXX - add set methods for sensor characteristics.
// XXX - is psi heading or track? I think heading.
// XXX - add outputs for filter covariance to measure convergence.
// XXX - incorporate magnetometers.
#ifndef UNAVINS_H
#define UNAVINS_H
#if defined(ARDUINO)
#include "Arduino.h"
#include "Eigen.h"
#include <Eigen/Dense>
#else
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#include <Eigen/Core>
#include <Eigen/Dense>
uint64_t micros() {
struct timeval tv;
gettimeofday(&tv,NULL);
return tv.tv_sec*(uint64_t)1000000+tv.tv_usec;
}
class elapsedMicros
{
private:
unsigned long us;
public:
elapsedMicros(void) { us = micros(); }
elapsedMicros(unsigned long val) { us = micros() - val; }
elapsedMicros(const elapsedMicros &orig) { us = orig.us; }
operator unsigned long () const { return micros() - us; }
elapsedMicros & operator = (const elapsedMicros &rhs) { us = rhs.us; return *this; }
elapsedMicros & operator = (unsigned long val) { us = micros() - val; return *this; }
elapsedMicros & operator -= (unsigned long val) { us += val ; return *this; }
elapsedMicros & operator += (unsigned long val) { us -= val ; return *this; }
elapsedMicros operator - (int val) const { elapsedMicros r(*this); r.us += val; return r; }
elapsedMicros operator - (unsigned int val) const { elapsedMicros r(*this); r.us += val; return r; }
elapsedMicros operator - (long val) const { elapsedMicros r(*this); r.us += val; return r; }
elapsedMicros operator - (unsigned long val) const { elapsedMicros r(*this); r.us += val; return r; }
elapsedMicros operator + (int val) const { elapsedMicros r(*this); r.us -= val; return r; }
elapsedMicros operator + (unsigned int val) const { elapsedMicros r(*this); r.us -= val; return r; }
elapsedMicros operator + (long val) const { elapsedMicros r(*this); r.us -= val; return r; }
elapsedMicros operator + (unsigned long val) const { elapsedMicros r(*this); r.us -= val; return r; }
};
#endif
class uNavINS {
public:
void update(unsigned long TOW,double vn,double ve,double vd,double lat,double lon,double alt,float p,float q,float r,float ax,float ay,float az,float hx,float hy, float hz);
float getPitch_rad();
float getRoll_rad();
float getYaw_rad();
float getHeading_rad();
double getLatitude_rad();
double getLongitude_rad();
double getAltitude_m();
double getVelNorth_ms();
double getVelEast_ms();
double getVelDown_ms();
float getGroundTrack_rad();
float getGyroBiasX_rads();
float getGyroBiasY_rads();
float getGyroBiasZ_rads();
float getAccelBiasX_mss();
float getAccelBiasY_mss();
float getAccelBiasZ_mss();
private:
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// error characteristics of navigation parameters
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Std dev of Accelerometer Wide Band Noise (m/s^2)
const float SIG_W_A = 1.0f; // 1 m/s^2
// Std dev of gyro output noise (rad/s)
const float SIG_W_G = 0.00524f; // 0.3 deg/s
// Std dev of Accelerometer Markov Bias
const float SIG_A_D = 0.1f; // 5e-2*g
// Correlation time or time constant
const float TAU_A = 100.0f;
// Std dev of correlated gyro bias
const float SIG_G_D = 0.00873f; // 0.1 deg/s
// Correlation time or time constant
const float TAU_G = 50.0f;
// GPS measurement noise std dev (m)
const float SIG_GPS_P_NE = 3.0f;
const float SIG_GPS_P_D = 5.0f;
// GPS measurement noise std dev (m/s)
const float SIG_GPS_V = 0.5f;
// Initial set of covariance
const float P_P_INIT = 10.0f;
const float P_V_INIT = 1.0f;
const float P_A_INIT = 0.34906f; // 20 deg
const float P_HDG_INIT = 3.14159f; // 180 deg
const float P_AB_INIT = 0.9810f; // 0.5*g
const float P_GB_INIT = 0.01745f; // 5 deg/s
// acceleration due to gravity
const float G = 9.807f;
// major eccentricity squared
const double ECC2 = 0.0066943799901;
// earth semi-major axis radius (m)
const double EARTH_RADIUS = 6378137.0;
// initialized
bool initialized = false;
// timing
elapsedMicros _t;
float _dt;
unsigned long previousTOW;
// estimated attitude
float phi, theta, psi, heading;
// initial heading angle
float psi_initial;
// estimated NED velocity
double vn_ins, ve_ins, vd_ins;
// estimated location
double lat_ins, lon_ins, alt_ins;
// magnetic heading corrected for roll and pitch angle
float Bxc, Byc;
// accelerometer bias
float abx, aby, abz;
// gyro bias
float gbx, gby, gbz;
// earth radius at location
double Re, Rn, denom;
// State matrix
Eigen::Matrix<float,15,15> Fs = Eigen::Matrix<float,15,15>::Identity();
// State transition matrix
Eigen::Matrix<float,15,15> PHI = Eigen::Matrix<float,15,15>::Zero();
// Covariance matrix
Eigen::Matrix<float,15,15> P = Eigen::Matrix<float,15,15>::Zero();
// For process noise transformation
Eigen::Matrix<float,15,12> Gs = Eigen::Matrix<float,15,12>::Zero();
Eigen::Matrix<float,12,12> Rw = Eigen::Matrix<float,12,12>::Zero();
// Process noise matrix
Eigen::Matrix<float,15,15> Q = Eigen::Matrix<float,15,15>::Zero();
// Gravity model
Eigen::Matrix<float,3,1> grav = Eigen::Matrix<float,3,1>::Zero();
// Rotation rate
Eigen::Matrix<float,3,1> om_ib = Eigen::Matrix<float,3,1>::Zero();
// Specific force
Eigen::Matrix<float,3,1> f_b = Eigen::Matrix<float,3,1>::Zero();
// DCM
Eigen::Matrix<float,3,3> C_N2B = Eigen::Matrix<float,3,3>::Zero();
// DCM transpose
Eigen::Matrix<float,3,3> C_B2N = Eigen::Matrix<float,3,3>::Zero();
// Temporary to get dxdt
Eigen::Matrix<float,3,1> dx = Eigen::Matrix<float,3,1>::Zero();
Eigen::Matrix<double,3,1> dxd = Eigen::Matrix<double,3,1>::Zero();
// NED velocity INS
Eigen::Matrix<double,3,1> V_ins = Eigen::Matrix<double,3,1>::Zero();
// LLA INS
Eigen::Matrix<double,3,1> lla_ins = Eigen::Matrix<double,3,1>::Zero();
// NED velocity GPS
Eigen::Matrix<double,3,1> V_gps = Eigen::Matrix<double,3,1>::Zero();
// LLA GPS
Eigen::Matrix<double,3,1> lla_gps = Eigen::Matrix<double,3,1>::Zero();
// Position ECEF INS
Eigen::Matrix<double,3,1> pos_ecef_ins = Eigen::Matrix<double,3,1>::Zero();
// Position NED INS
Eigen::Matrix<double,3,1> pos_ned_ins = Eigen::Matrix<double,3,1>::Zero();
// Position ECEF GPS
Eigen::Matrix<double,3,1> pos_ecef_gps = Eigen::Matrix<double,3,1>::Zero();
// Position NED GPS
Eigen::Matrix<double,3,1> pos_ned_gps = Eigen::Matrix<double,3,1>::Zero();
// Quat
Eigen::Matrix<float,4,1> quat = Eigen::Matrix<float,4,1>::Zero();
// dquat
Eigen::Matrix<float,4,1> dq = Eigen::Matrix<float,4,1>::Zero();
// difference between GPS and INS
Eigen::Matrix<float,6,1> y = Eigen::Matrix<float,6,1>::Zero();
// GPS measurement noise
Eigen::Matrix<float,6,6> R = Eigen::Matrix<float,6,6>::Zero();
Eigen::Matrix<float,15,1> x = Eigen::Matrix<float,15,1>::Zero();
// Kalman Gain
Eigen::Matrix<float,15,6> K = Eigen::Matrix<float,15,6>::Zero();
Eigen::Matrix<float,6,15> H = Eigen::Matrix<float,6,15>::Zero();
// skew symmetric
Eigen::Matrix<float,3,3> sk(Eigen::Matrix<float,3,1> w);
// lla rate
Eigen::Matrix<double,3,1> llarate(Eigen::Matrix<double,3,1> V,Eigen::Matrix<double,3,1> lla);
// lla to ecef
Eigen::Matrix<double,3,1> lla2ecef(Eigen::Matrix<double,3,1> lla);
// ecef to ned
Eigen::Matrix<double,3,1> ecef2ned(Eigen::Matrix<double,3,1> ecef,Eigen::Matrix<double,3,1> pos_ref);
// quaternion to dcm
Eigen::Matrix<float,3,3> quat2dcm(Eigen::Matrix<float,4,1> q);
// quaternion multiplication
Eigen::Matrix<float,4,1> qmult(Eigen::Matrix<float,4,1> p, Eigen::Matrix<float,4,1> q);
// maps angle to +/- 180
float constrainAngle180(float dta);
// maps angle to 0-360
float constrainAngle360(float dta);
};
#endif