forked from tensorflow/haskell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main.hs
147 lines (129 loc) · 5.6 KB
/
Main.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
-- Copyright 2016 TensorFlow authors.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeApplications #-}
import Control.Monad (forM_, when)
import Control.Monad.IO.Class (liftIO)
import Data.Int (Int32, Int64)
import Data.List (genericLength)
import qualified Data.Text.IO as T
import qualified Data.Vector as V
import qualified TensorFlow.Core as TF
import qualified TensorFlow.Ops as TF hiding (initializedVariable, zeroInitializedVariable)
import qualified TensorFlow.Variable as TF
import qualified TensorFlow.Minimize as TF
import TensorFlow.Examples.MNIST.InputData
import TensorFlow.Examples.MNIST.Parse
numPixels, numLabels :: Int64
numPixels = 28*28 :: Int64
numLabels = 10 :: Int64
-- | Create tensor with random values where the stddev depends on the width.
randomParam :: Int64 -> TF.Shape -> TF.Build (TF.Tensor TF.Build Float)
randomParam width (TF.Shape shape) =
(`TF.mul` stddev) <$> TF.truncatedNormal (TF.vector shape)
where
stddev = TF.scalar (1 / sqrt (fromIntegral width))
-- Types must match due to model structure.
type LabelType = Int32
data Model = Model {
train :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session ()
, infer :: TF.TensorData Float -- ^ images
-> TF.Session (V.Vector LabelType) -- ^ predictions
, errorRate :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session Float
}
createModel :: TF.Build Model
createModel = do
-- Use -1 batch size to support variable sized batches.
let batchSize = -1
-- Inputs.
images <- TF.placeholder [batchSize, numPixels]
-- Hidden layer.
let numUnits = 500
hiddenWeights <-
TF.initializedVariable =<< randomParam numPixels [numPixels, numUnits]
hiddenBiases <- TF.zeroInitializedVariable [numUnits]
let hiddenZ = (images `TF.matMul` TF.readValue hiddenWeights)
`TF.add` TF.readValue hiddenBiases
let hidden = TF.relu hiddenZ
-- Logits.
logitWeights <-
TF.initializedVariable =<< randomParam numUnits [numUnits, numLabels]
logitBiases <- TF.zeroInitializedVariable [numLabels]
let logits = (hidden `TF.matMul` TF.readValue logitWeights)
`TF.add` TF.readValue logitBiases
predict <- TF.render @TF.Build @LabelType $
TF.argMax (TF.softmax logits) (TF.scalar (1 :: LabelType))
-- Create training action.
labels <- TF.placeholder [batchSize]
let labelVecs = TF.oneHot labels (fromIntegral numLabels) 1 0
loss =
TF.reduceMean $ fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs
params = [hiddenWeights, hiddenBiases, logitWeights, logitBiases]
trainStep <- TF.minimizeWith TF.adam loss params
let correctPredictions = TF.equal predict labels
errorRateTensor <- TF.render $ 1 - TF.reduceMean (TF.cast correctPredictions)
return Model {
train = \imFeed lFeed -> TF.runWithFeeds_ [
TF.feed images imFeed
, TF.feed labels lFeed
] trainStep
, infer = \imFeed -> TF.runWithFeeds [TF.feed images imFeed] predict
, errorRate = \imFeed lFeed -> TF.unScalar <$> TF.runWithFeeds [
TF.feed images imFeed
, TF.feed labels lFeed
] errorRateTensor
}
main :: IO ()
main = TF.runSession $ do
-- Read training and test data.
trainingImages <- liftIO (readMNISTSamples =<< trainingImageData)
trainingLabels <- liftIO (readMNISTLabels =<< trainingLabelData)
testImages <- liftIO (readMNISTSamples =<< testImageData)
testLabels <- liftIO (readMNISTLabels =<< testLabelData)
-- Create the model.
model <- TF.build createModel
-- Functions for generating batches.
let encodeImageBatch xs =
TF.encodeTensorData [genericLength xs, numPixels]
(fromIntegral <$> mconcat xs)
let encodeLabelBatch xs =
TF.encodeTensorData [genericLength xs]
(fromIntegral <$> V.fromList xs)
let batchSize = 100
let selectBatch i xs = take batchSize $ drop (i * batchSize) (cycle xs)
-- Train.
forM_ ([0..1000] :: [Int]) $ \i -> do
let images = encodeImageBatch (selectBatch i trainingImages)
labels = encodeLabelBatch (selectBatch i trainingLabels)
train model images labels
when (i `mod` 100 == 0) $ do
err <- errorRate model images labels
liftIO $ putStrLn $ "training error " ++ show (err * 100)
liftIO $ putStrLn ""
-- Test.
testErr <- errorRate model (encodeImageBatch testImages)
(encodeLabelBatch testLabels)
liftIO $ putStrLn $ "test error " ++ show (testErr * 100)
-- Show some predictions.
testPreds <- infer model (encodeImageBatch testImages)
liftIO $ forM_ ([0..3] :: [Int]) $ \i -> do
putStrLn ""
T.putStrLn $ drawMNIST $ testImages !! i
putStrLn $ "expected " ++ show (testLabels !! i)
putStrLn $ " got " ++ show (testPreds V.! i)