Skip to content

Latest commit

 

History

History
24 lines (20 loc) · 605 Bytes

README.md

File metadata and controls

24 lines (20 loc) · 605 Bytes

HybrUR

A Hybrid Physical-Neural Solution for Unsupervised Underwater Image Restoration

Requirements

  • Python 3
  • Pytorch (with CUDA)
  • Opencv-Python
  • Pyyaml

Project directory

  • checkpoints -- the trained network parameters to reload the HybrUR model
  • config -- deploy the testing parameters
  • model -- methodology implementation
  • results -- the storage path of generated images
  • samples -- network input (underwater and in-air images)
  • utils -- utility functions

Usage

cd `project root directory`
python test.py 

The generated results will be saved in the results folder