forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.yaml
307 lines (261 loc) · 9.27 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# ############################################################################
# Model: E2E ASR with attention-based ASR
# Encoder: CRDNN model
# Decoder: GRU + beamsearch + RNNLM
# Tokens: BPE with unigram
# losses: CTC+ NLL
# Training: AISHELL-1
# Authors: Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga,
# Samuele Cornell, Loren Lugosch 2021
# ############################################################################
seed: 1
__set_seed: !apply:torch.manual_seed [!ref <seed>]
output_folder: !ref results/base/<seed>
cer_file: !ref <output_folder>/cer.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data files
NOISE_DATASET_URL: https://www.dropbox.com/scl/fi/a09pj97s5ifan81dqhi4n/noises.zip?rlkey=j8b0n9kdjdr32o1f06t0cw5b7&dl=1
data_folder: !PLACEHOLDER # e,g./path/to/aishell
data_folder_noise: !ref <data_folder>/noise # The noisy sequences for data augmentation will automatically be downloaded here.
skip_prep: False
remove_compressed_wavs: False
ckpt_interval_minutes: 15 # save checkpoint every N min
train_data: !ref <output_folder>/train.csv
valid_data: !ref <output_folder>/dev.csv
test_data: !ref <output_folder>/test.csv
noise_annotation: !ref <save_folder>/noise.csv #The data manifest files are created by the data preparation script
tokenizer_file: speechbrain/asr-transformer-aishell/tokenizer.ckpt
####################### Training Parameters ####################################
number_of_epochs: 40
number_of_ctc_epochs: 10
batch_size: 16
lr: 0.0003
ctc_weight: 0.5
sorting: ascending
precision: fp32 # bf16, fp16 or fp32
dynamic_batching: True
max_batch_length: 15 # in terms of "duration" in annotations by default, second here
shuffle: False # if true re-creates batches at each epoch shuffling examples.
num_buckets: 10 # floor(log(max_batch_len/left_bucket_len, multiplier)) + 1
batch_ordering: ascending
dynamic_batch_sampler:
max_batch_length: !ref <max_batch_length>
shuffle: !ref <shuffle>
num_buckets: !ref <num_buckets>
batch_ordering: !ref <batch_ordering>
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 40
opt_class: !name:torch.optim.Adam
lr: !ref <lr>
# Dataloader options
num_workers: 4
train_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
valid_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
test_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
####################### Model Parameters #######################################
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 2
cnn_channels: (128, 256)
inter_layer_pooling_size: (2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 4
rnn_neurons: 1024
rnn_bidirectional: True
dnn_blocks: 2
dnn_neurons: 512
emb_size: 128
dec_neurons: 1024
output_neurons: 5000 # Number of tokens
# we need to have blank_index != bos_index != eos_index when using CTCScorer
blank_index: 0
bos_index: 1
eos_index: 2
label_smoothing: 0.1
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
beam_size: 80
eos_threshold: 1.5
using_max_attn_shift: True
max_attn_shift: 240
coverage_penalty: 1.5
temperature: 1.25
scorer_beam_scale: 0.5
# AISHELL-1 has spaces between words in the transcripts,
# which Chinese writing normally does not do.
# If remove_spaces, spaces are removed
# from the transcript before computing CER.
remove_spaces: True
split_tokens: !apply:operator.not_ [!ref <remove_spaces>]
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
normalize: !new:speechbrain.processing.features.InputNormalization
norm_type: global
############################## Augmentations ###################################
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
# Download and prepare the dataset of noisy sequences for augmentation
prepare_noise_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <NOISE_DATASET_URL>
dest_folder: !ref <data_folder_noise>
ext: wav
csv_file: !ref <noise_annotation>
# Add noise to input signal
add_noise: !new:speechbrain.augment.time_domain.AddNoise
csv_file: !ref <noise_annotation>
snr_low: 0
snr_high: 15
noise_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Speed perturbation
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
orig_freq: !ref <sample_rate>
speeds: [95, 100, 105]
# Frequency drop: randomly drops a number of frequency bands to zero.
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
drop_freq_low: 0
drop_freq_high: 1
drop_freq_count_low: 1
drop_freq_count_high: 3
drop_freq_width: 0.05
# Time drop: randomly drops a number of temporal chunks.
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
drop_length_low: 1000
drop_length_high: 2000
drop_count_low: 1
drop_count_high: 5
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
concat_original: True
min_augmentations: 4
max_augmentations: 4
augment_prob: 1.0
augmentations: [
!ref <add_noise>,
!ref <speed_perturb>,
!ref <drop_freq>,
!ref <drop_chunk>]
############################## Models ##########################################
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
input_shape: [null, null, !ref <n_mels>]
activation: !ref <activation>
dropout: !ref <dropout>
cnn_blocks: !ref <cnn_blocks>
cnn_channels: !ref <cnn_channels>
cnn_kernelsize: !ref <cnn_kernelsize>
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
time_pooling: True
using_2d_pooling: False
time_pooling_size: !ref <time_pooling_size>
rnn_class: !ref <rnn_class>
rnn_layers: !ref <rnn_layers>
rnn_neurons: !ref <rnn_neurons>
rnn_bidirectional: !ref <rnn_bidirectional>
rnn_re_init: True
dnn_blocks: !ref <dnn_blocks>
dnn_neurons: !ref <dnn_neurons>
use_rnnp: False
emb: !new:speechbrain.nnet.embedding.Embedding
num_embeddings: !ref <output_neurons>
embedding_dim: !ref <emb_size>
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
enc_dim: !ref <dnn_neurons>
input_size: !ref <emb_size>
rnn_type: gru
attn_type: location
hidden_size: !ref <dec_neurons>
attn_dim: 1024
num_layers: 1
scaling: 1.0
channels: 10
kernel_size: 100
re_init: True
dropout: !ref <dropout>
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dec_neurons>
n_neurons: !ref <output_neurons>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
seq_cost: !name:speechbrain.nnet.losses.nll_loss
label_smoothing: !ref <label_smoothing>
# Models
modules:
enc: !ref <enc>
emb: !ref <emb>
dec: !ref <dec>
ctc_lin: !ref <ctc_lin>
seq_lin: !ref <seq_lin>
normalize: !ref <normalize>
model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
tokenizer: !new:sentencepiece.SentencePieceProcessor
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
collect_in: !ref <save_folder>/tokenizer
loadables:
tokenizer: !ref <tokenizer>
paths:
tokenizer: !ref <tokenizer_file>
############################## Decoding ########################################
ctc_scorer: !new:speechbrain.decoders.scorer.CTCScorer
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
ctc_fc: !ref <ctc_lin>
coverage_scorer: !new:speechbrain.decoders.scorer.CoverageScorer
vocab_size: !ref <output_neurons>
scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
full_scorers: [!ref <coverage_scorer>, !ref <ctc_scorer>]
weights:
coverage: !ref <coverage_penalty>
ctc: !ref <ctc_weight>
scorer_beam_scale: !ref <scorer_beam_scale>
beam_search: !new:speechbrain.decoders.S2SRNNBeamSearcher
embedding: !ref <emb>
decoder: !ref <dec>
linear: !ref <seq_lin>
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <beam_size>
eos_threshold: !ref <eos_threshold>
temperature: !ref <temperature>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
scorer: !ref <scorer>
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr>
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
############################## Logging and Pretrainer ##########################
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
scheduler: !ref <lr_annealing>
normalizer: !ref <normalize>
counter: !ref <epoch_counter>
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
split_tokens: !ref <split_tokens>