forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ASR_transformer.yaml
312 lines (259 loc) · 9.4 KB
/
train_ASR_transformer.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# ############################################################################
# Model: E2E ASR with Transformer
# Encoder: Transformer Encoder
# Decoder: Transformer Decoder + (CTC/ATT joint) beamsearch
# Tokens: BPE with unigram
# losses: CTC + KLdiv (Label Smoothing loss)
# Training: AISHELL-1
# Authors: Jianyuan Zhong, Titouan Parcollet
# ############################################################################
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 8886
__set_seed: !apply:torch.manual_seed [!ref <seed>]
output_folder: !ref results/transformer/<seed>
cer_file: !ref <output_folder>/cer.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data for augmentation
NOISE_DATASET_URL: https://www.dropbox.com/scl/fi/a09pj97s5ifan81dqhi4n/noises.zip?rlkey=j8b0n9kdjdr32o1f06t0cw5b7&dl=1
# Data files
data_folder: !PLACEHOLDER # e,g./path/to/aishell
data_folder_noise: !ref <data_folder>/noise # The noisy sequences for data augmentation will automatically be downloaded here.
skip_prep: False
remove_compressed_wavs: False
ckpt_interval_minutes: 15 # save checkpoint every N min
train_data: !ref <save_folder>/train.csv
valid_data: !ref <save_folder>/dev.csv
test_data: !ref <save_folder>/test.csv
noise_annotation: !ref <save_folder>/noise.csv #The data manifest files are created by the data preparation script
tokenizer_file: speechbrain/asr-transformer-aishell/tokenizer.ckpt
####################### Training Parameters ####################################
number_of_epochs: 50
batch_size: 8
ctc_weight: 0.3
grad_accumulation_factor: 4
loss_reduction: 'batchmean'
sorting: random
avg_checkpoints: 10 # Number of checkpoints to average for evaluation
precision: fp32 # bf16, fp16 or fp32
dynamic_batching: False
max_batch_length: 15 # in terms of "duration" in annotations by default, second here
shuffle: False # if true re-creates batches at each epoch shuffling examples.
num_buckets: 10 # floor(log(max_batch_len/left_bucket_len, multiplier)) + 1
batch_ordering: ascending
dynamic_batch_sampler:
max_batch_length: !ref <max_batch_length>
shuffle: !ref <shuffle>
num_buckets: !ref <num_buckets>
batch_ordering: !ref <batch_ordering>
num_workers: 4
# stages related parameters
stage_one_epochs: 40
lr_adam: 1.0
lr_sgd: 0.000025
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 80
# Dataloader options
train_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
shuffle: True
valid_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
test_dataloader_opts:
batch_size: !ref <batch_size>
num_workers: !ref <num_workers>
####################### Model Parameters #######################################
# Transformer
d_model: 256
nhead: 4
num_encoder_layers: 12
num_decoder_layers: 6
d_ffn: 2048
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 5000
# Outputs
blank_index: 0
label_smoothing: 0.1
pad_index: 0
bos_index: 1
eos_index: 2
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0 # 1.0
valid_search_interval: 10
valid_beam_size: 10
test_beam_size: 10
ctc_weight_decode: 0.40
############################## Models ##########################################
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
input_shape: (8, 10, 80)
num_blocks: 2
num_layers_per_block: 1
out_channels: (256, 256)
kernel_sizes: (3, 3)
strides: (2, 2)
residuals: (False, False)
Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR # yamllint disable-line rule:line-length
input_size: 5120
tgt_vocab: !ref <output_neurons>
d_model: !ref <d_model>
nhead: !ref <nhead>
num_encoder_layers: !ref <num_encoder_layers>
num_decoder_layers: !ref <num_decoder_layers>
d_ffn: !ref <d_ffn>
dropout: !ref <transformer_dropout>
activation: !ref <activation>
normalize_before: True
causal: False
tokenizer: !new:sentencepiece.SentencePieceProcessor
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
modules:
CNN: !ref <CNN>
Transformer: !ref <Transformer>
seq_lin: !ref <seq_lin>
ctc_lin: !ref <ctc_lin>
model: !new:torch.nn.ModuleList
- [!ref <CNN>, !ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]
# define two optimizers here for two-stage training
Adam: !name:torch.optim.Adam
lr: 0
betas: (0.9, 0.98)
eps: 0.000000001
SGD: !name:torch.optim.SGD
lr: !ref <lr_sgd>
momentum: 0.99
nesterov: True
############################## Decoding & optimiser ############################
ctc_scorer: !new:speechbrain.decoders.scorer.CTCScorer
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
ctc_fc: !ref <ctc_lin>
scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
full_scorers: [!ref <ctc_scorer>]
weights:
ctc: !ref <ctc_weight_decode>
valid_search: !new:speechbrain.decoders.S2STransformerBeamSearcher
modules: [!ref <Transformer>, !ref <seq_lin>]
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <valid_beam_size>
using_eos_threshold: False
length_normalization: True
scorer: !ref <scorer>
test_search: !new:speechbrain.decoders.S2STransformerBeamSearcher
modules: [!ref <Transformer>, !ref <seq_lin>]
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <test_beam_size>
using_eos_threshold: False
length_normalization: True
scorer: !ref <scorer>
log_softmax: !new:torch.nn.LogSoftmax
dim: -1
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
reduction: !ref <loss_reduction>
seq_cost: !name:speechbrain.nnet.losses.kldiv_loss
label_smoothing: !ref <label_smoothing>
reduction: !ref <loss_reduction>
noam_annealing: !new:speechbrain.nnet.schedulers.NoamScheduler
lr_initial: !ref <lr_adam>
n_warmup_steps: 25000
model_size: !ref <d_model>
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
noam_scheduler: !ref <noam_annealing>
normalizer: !ref <normalize>
counter: !ref <epoch_counter>
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
normalize: !new:speechbrain.processing.features.InputNormalization
norm_type: global
update_until_epoch: 4
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
############################## Augmentation ####################################
# Download and prepare the dataset of noisy sequences for augmentation
prepare_noise_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <NOISE_DATASET_URL>
dest_folder: !ref <data_folder_noise>
ext: wav
csv_file: !ref <noise_annotation>
# Add noise to input signal
add_noise: !new:speechbrain.augment.time_domain.AddNoise
csv_file: !ref <noise_annotation>
snr_low: 0
snr_high: 15
noise_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
concat_original: True
min_augmentations: 1
max_augmentations: 1
augment_prob: 1.0
augmentations: [
!ref <add_noise>]
# Time Drop
time_drop: !new:speechbrain.augment.freq_domain.SpectrogramDrop
drop_length_low: 0
drop_length_high: 100
drop_count_low: 2
drop_count_high: 2
# Frequency Drop
freq_drop: !new:speechbrain.augment.freq_domain.SpectrogramDrop
drop_length_low: 30
drop_length_high: 40
drop_count_low: 2
drop_count_high: 2
dim: 2
# Time warp
time_warp: !new:speechbrain.augment.freq_domain.Warping
fea_augment: !new:speechbrain.augment.augmenter.Augmenter
concat_original: True
min_augmentations: 1
max_augmentations: 1
augment_start_index: !ref <batch_size> # This leaves original inputs unchanged
concat_end_index: !ref <batch_size> # This leaves original inputs unchanged
augment_prob: 1.0
augmentations: [
!ref <time_drop>,
!ref <freq_drop>,
!ref <time_warp>]
############################## Logging and Pretrainer ##########################
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
# AISHELL-1 has spaces between words in the transcripts,
# which Chinese writing normally does not do.
# If remove_spaces, spaces are removed
# from the transcript before computing CER.
remove_spaces: True
split_tokens: !apply:operator.not_ [!ref <remove_spaces>]
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
split_tokens: !ref <split_tokens>
acc_computer: !name:speechbrain.utils.Accuracy.AccuracyStats
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
collect_in: !ref <save_folder>
loadables:
tokenizer: !ref <tokenizer>
paths:
tokenizer: !ref <tokenizer_file>