forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xvect_leaf.yaml
211 lines (172 loc) · 7.09 KB
/
xvect_leaf.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# ################################
# Model: Classification with xvector and LEAF
# Authors: Hwidong Na & Mirco Ravanelli
# Script adapted by David Raby-Pepin 2021
# Further adapted for LEAF by Sarthak Yadav 2022
# ################################
# Basic parameters
seed: 1986
__set_seed: !apply:torch.manual_seed [!ref <seed>]
# Use 12 for V2 12 task and 35 for V2 35 task
number_of_commands: 12
output_folder: !ref results/xvect_leaf_legacy_complex_mvnorm_v<number_of_commands>/<seed>
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data for augmentation
NOISE_DATASET_URL: https://www.dropbox.com/scl/fi/a09pj97s5ifan81dqhi4n/noises.zip?rlkey=j8b0n9kdjdr32o1f06t0cw5b7&dl=1
RIR_DATASET_URL: https://www.dropbox.com/scl/fi/linhy77c36mu10965a836/RIRs.zip?rlkey=pg9cu8vrpn2u173vhiqyu743u&dl=1
# Data files
# Data files
data_folder: !PLACEHOLDER # e.g. /path/to/GSC
data_folder_noise: !ref <data_folder>/noise # The noisy sequences for data augmentation will automatically be downloaded here.
data_folder_rir: !ref <data_folder>/rir # The impulse responses used for data augmentation will automatically be downloaded here.
train_annotation: !ref <save_folder>/train.csv
valid_annotation: !ref <save_folder>/valid.csv
test_annotation: !ref <save_folder>/test.csv
noise_annotation: !ref <save_folder>/noise.csv
rir_annotation: !ref <save_folder>/rir.csv
# Percentage of files used for validation and test
validation_percentage: 10
testing_percentage: 10
# Percentage of unknown and silence examples
# (relative to total of known word samples) to include
percentage_unknown: 10 # Set this to 0 for the V2 35 task
percentage_silence: 10 # Set this to 0 for the V2 35 task
skip_prep: False
ckpt_interval_minutes: 15 # save checkpoint every N min
####################### Training Parameters ####################################
number_of_epochs: 100
batch_size: 32
lr: 0.001
lr_final: 0.0001
sample_rate: 16000
shuffle: True
# Feature parameters
n_features: 24
# Number of classes (i.e. different commands)
out_n_neurons: !ref <number_of_commands> #includes core commands & auxiliary words
num_workers: 4
dataloader_options:
batch_size: !ref <batch_size>
shuffle: !ref <shuffle>
num_workers: !ref <num_workers>
# Functions
compute_features: !new:speechbrain.lobes.features.Leaf
out_channels: !ref <n_features>
in_channels: 1
min_freq: 0.
n_fft: 400
use_legacy_complex: True
embedding_model: !new:speechbrain.lobes.models.Xvector.Xvector
in_channels: !ref <n_features>
activation: !name:torch.nn.LeakyReLU
tdnn_blocks: 5
tdnn_channels: [512, 512, 512, 512, 1500]
tdnn_kernel_sizes: [5, 3, 3, 1, 1]
tdnn_dilations: [1, 2, 3, 1, 1]
lin_neurons: 512
classifier: !new:speechbrain.lobes.models.Xvector.Classifier
input_shape: [null, null, 512]
activation: !name:torch.nn.LeakyReLU
lin_blocks: 1
lin_neurons: 512
out_neurons: !ref <out_n_neurons>
softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
# Download and prepare the dataset of noisy sequences for augmentation
prepare_noise_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <NOISE_DATASET_URL>
dest_folder: !ref <data_folder_noise>
ext: wav
csv_file: !ref <noise_annotation>
# Add noise to input signal
snr_low: 0 # Min SNR for noise augmentation
snr_high: 15 # Max SNR for noise augmentation
add_noise: !new:speechbrain.augment.time_domain.AddNoise
csv_file: !ref <noise_annotation>
snr_low: !ref <snr_low>
snr_high: !ref <snr_high>
noise_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Download and prepare the dataset of room impulse responses for augmentation
prepare_rir_data: !name:speechbrain.augment.preparation.prepare_dataset_from_URL
URL: !ref <RIR_DATASET_URL>
dest_folder: !ref <data_folder_rir>
ext: wav
csv_file: !ref <rir_annotation>
# Add reverberation to input signal
add_reverb: !new:speechbrain.augment.time_domain.AddReverb
csv_file: !ref <rir_annotation>
reverb_sample_rate: !ref <sample_rate>
clean_sample_rate: !ref <sample_rate>
num_workers: !ref <num_workers>
# Frequency drop: randomly drops a number of frequency bands to zero.
drop_freq_low: 0 # Min frequency band dropout probability
drop_freq_high: 1 # Max frequency band dropout probability
drop_freq_count_low: 1 # Min number of frequency bands to drop
drop_freq_count_high: 3 # Max number of frequency bands to drop
drop_freq_width: 0.05 # Width of frequency bands to drop
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
drop_freq_low: !ref <drop_freq_low>
drop_freq_high: !ref <drop_freq_high>
drop_freq_count_low: !ref <drop_freq_count_low>
drop_freq_count_high: !ref <drop_freq_count_high>
drop_freq_width: !ref <drop_freq_width>
# Time drop: randomly drops a number of temporal chunks.
drop_chunk_count_low: 1 # Min number of audio chunks to drop
drop_chunk_count_high: 5 # Max number of audio chunks to drop
drop_chunk_length_low: 1000 # Min length of audio chunks to drop
drop_chunk_length_high: 2000 # Max length of audio chunks to drop
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
drop_length_low: !ref <drop_chunk_length_low>
drop_length_high: !ref <drop_chunk_length_high>
drop_count_low: !ref <drop_chunk_count_low>
drop_count_high: !ref <drop_chunk_count_high>
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
parallel_augment: True
concat_original: True
repeat_augment: 1
shuffle_augmentations: False
min_augmentations: 4
max_augmentations: 4
augment_prob: 1.0
augmentations: [
!ref <add_noise>,
!ref <add_reverb>,
!ref <drop_freq>,
!ref <drop_chunk>]
mean_var_norm: !new:speechbrain.processing.features.InputNormalization
norm_type: sentence
std_norm: True
modules:
compute_features: !ref <compute_features>
embedding_model: !ref <embedding_model>
classifier: !ref <classifier>
softmax: !ref <softmax>
mean_var_norm: !ref <mean_var_norm>
# Cost + optimization
compute_cost: !name:speechbrain.nnet.losses.nll_loss
opt_class: !name:torch.optim.Adam
lr: !ref <lr>
weight_decay: 0.000002
lr_annealing: !new:speechbrain.nnet.schedulers.LinearScheduler
initial_value: !ref <lr>
final_value: !ref <lr_final>
epoch_count: !ref <number_of_epochs>
# Logging + checkpoints
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_stats: !name:speechbrain.utils.metric_stats.MetricStats
metric: !name:speechbrain.nnet.losses.classification_error
reduction: batch
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
embedding_model: !ref <embedding_model>
classifier: !ref <classifier>
normalizer: !ref <mean_var_norm>
counter: !ref <epoch_counter>