forked from speechbrain/speechbrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer.yaml
332 lines (286 loc) · 9.83 KB
/
transformer.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# ############################################################################
# Model: E2E ASR with Transformer
# Encoder: Transformer Encoder
# Decoder: Transformer Decoder + (CTC/ATT joint) beamsearch + TransformerLM
# Tokens: unigram
# losses: CTC + KLdiv (Label Smoothing loss)
# Training: Switchboard
# Authors: Jianyuan Zhong, Titouan Parcollet, Samuele Cornell, Dominik Wagner
# ############################################################################
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 1312
__set_seed: !apply:torch.manual_seed [!ref <seed>]
output_folder: !ref results/transformer/<seed>
output_wer_folder: !ref <output_folder>/
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Language model (LM) pretraining
# NB: To avoid mismatch, the speech recognizer must be trained with the same
# tokenizer used for LM training. You can download everything from the
# Speechbrain HuggingFace repository, or you can provide a local
# path pointing to a directory containing the lm.ckpt and tokenizer.ckpt.
pretrained_lm_tokenizer_path: !PLACEHOLDER
tokenizer_file: !ref <pretrained_lm_tokenizer_path>/tokenizer.ckpt
lm_file: !ref <pretrained_lm_tokenizer_path>/lm.ckpt
# Data files
# Set the local path to the Switchboard dataset (e.g. /nfs/data/swbd) here
data_folder: !PLACEHOLDER
splits: [train, dev]
split_ratio: [99, 1]
skip_prep: False
# We don't need the Fisher corpus, here since
# it is only used for Tokenizer and LM training
add_fisher_corpus: False
# Remove optional/deletable parts of the transcript
normalize_words: True
# Maximum number of times the same utterance is allowed to appear
# in the training data.
max_utt: 300
train_csv: !ref <output_folder>/train.csv
valid_csv: !ref <output_folder>/dev.csv
# The test data is split into the full test set (test.csv),
# the Switchboard portion of the data (test_swbd.csv),
# and the Callhome portion of the data (test_callhome.csv).
test_csv:
- !ref <output_folder>/test_swbd.csv
- !ref <output_folder>/test_callhome.csv
- !ref <output_folder>/test.csv
ckpt_interval_minutes: 30 # save checkpoint every N min
####################### Training Parameters ####################################
# To make Transformers converge, the global batch size should be large enough.
# The global batch size is computed as:
# batch_size * n_gpus * grad_accumulation_factor.
# Empirically, we found that this value should be >= 128.
# Please, set your parameters accordingly.
number_of_epochs: 100
batch_size: 48 # This works for 1x GPU with 40GB
ctc_weight: 0.3
grad_accumulation_factor: 2
max_grad_norm: 5.0
loss_reduction: batchmean
sorting: random
avg_checkpoints: 5
#dynamic_batching: False
#
#dynamic_batch_sampler:
# feats_hop_size: 0.01
# max_batch_len: 100000 # in terms of frames
# num_buckets: 200
# shuffle_ex: False # re-creates batches at each epoch shuffling examples.
# batch_ordering: descending
# max_batch_ex: -1
# stages related parameters
lr_adam: 0.006
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 80
# Dataloader options
train_dataloader_opts:
batch_size: !ref <batch_size>
shuffle: True
num_workers: 12
valid_dataloader_opts:
batch_size: 1
test_dataloader_opts:
batch_size: 1
####################### Model Parameters ###########################
# Transformer
transformer_input_size: 1280
d_model: 256
nhead: 4
num_encoder_layers: 12
num_decoder_layers: 6
d_ffn: 2048
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 2000
# Outputs
blank_index: 0
label_smoothing: 0.1
pad_index: 0
bos_index: 1
eos_index: 2
# unk_index: 0
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
valid_search_interval: 10
valid_beam_size: 10
lm_weight: 0.30
test_beam_size: 60
ctc_weight_decode: 0.30
temperature: 1.0
temperature_lm: 1.0
using_eos_threshold: False
eos_threshold: 1.5
length_normalization: True
using_max_attn_shift: False
max_attn_shift: 30
scorer_beam_scale: 0.3
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
input_shape: (8, 10, 80)
num_blocks: 3
num_layers_per_block: 1
out_channels: (64, 64, 64)
kernel_sizes: (5, 5, 1)
strides: (2, 2, 1)
residuals: (False, False, True)
Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR # yamllint disable-line rule:line-length
input_size: !ref <transformer_input_size>
tgt_vocab: !ref <output_neurons>
d_model: !ref <d_model>
nhead: !ref <nhead>
num_encoder_layers: !ref <num_encoder_layers>
num_decoder_layers: !ref <num_decoder_layers>
d_ffn: !ref <d_ffn>
dropout: !ref <transformer_dropout>
activation: !ref <activation>
encoder_module: transformer
attention_type: regularMHA
normalize_before: True
causal: False
lm_model: !new:speechbrain.lobes.models.transformer.TransformerLM.TransformerLM # yamllint disable-line rule:line-length
vocab: !ref <output_neurons>
d_model: 264
d_embedding: 128
nhead: 12
num_encoder_layers: 12
num_decoder_layers: 0
d_ffn: 1024
dropout: 0.1
activation: !name:torch.nn.ReLU
normalize_before: False
tokenizer: !new:sentencepiece.SentencePieceProcessor
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
modules:
CNN: !ref <CNN>
Transformer: !ref <Transformer>
seq_lin: !ref <seq_lin>
ctc_lin: !ref <ctc_lin>
normalize: !ref <normalize>
model: !new:torch.nn.ModuleList
- [!ref <CNN>, !ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]
Adam: !name:torch.optim.Adam
lr: !ref <lr_adam>
betas: (0.9, 0.98)
eps: 0.000000001
transformerlm_scorer: !new:speechbrain.decoders.scorer.TransformerLMScorer
language_model: !ref <lm_model>
temperature: !ref <temperature_lm>
# Scorer
ctc_scorer: !new:speechbrain.decoders.scorer.CTCScorer
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
ctc_fc: !ref <ctc_lin>
scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
full_scorers: [!ref <transformerlm_scorer>, !ref <ctc_scorer>]
weights:
transformerlm: !ref <lm_weight>
ctc: !ref <ctc_weight_decode>
scorer_beam_scale: !ref <scorer_beam_scale>
valid_search: !new:speechbrain.decoders.S2STransformerBeamSearcher
modules: [!ref <Transformer>, !ref <seq_lin>]
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <valid_beam_size>
using_eos_threshold: !ref <using_eos_threshold>
length_normalization: !ref <length_normalization>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
scorer: !ref <scorer>
temperature: !ref <temperature>
test_search: !new:speechbrain.decoders.S2STransformerBeamSearcher
modules: [!ref <Transformer>, !ref <seq_lin>]
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <test_beam_size>
using_eos_threshold: !ref <using_eos_threshold>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
eos_threshold: !ref <eos_threshold>
temperature: !ref <temperature>
length_normalization: !ref <length_normalization>
scorer: !ref <scorer>
log_softmax: !new:torch.nn.LogSoftmax
dim: -1
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
reduction: !ref <loss_reduction>
seq_cost: !name:speechbrain.nnet.losses.kldiv_loss
label_smoothing: !ref <label_smoothing>
reduction: !ref <loss_reduction>
noam_annealing: !new:speechbrain.nnet.schedulers.NoamScheduler
lr_initial: !ref <lr_adam>
n_warmup_steps: 25000
# model_size: !ref <d_model>
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
noam_scheduler: !ref <noam_annealing>
normalizer: !ref <normalize>
counter: !ref <epoch_counter>
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
normalize: !new:speechbrain.processing.features.InputNormalization
norm_type: global
update_until_epoch: 4
############################## Augmentations ###################################
# Speed perturbation
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
orig_freq: !ref <sample_rate>
speeds: [95, 100, 105]
# Time Drop
time_drop: !new:speechbrain.augment.freq_domain.SpectrogramDrop
drop_length_low: 15
drop_length_high: 25
drop_count_low: 5
drop_count_high: 5
# Frequency Drop
freq_drop: !new:speechbrain.augment.freq_domain.SpectrogramDrop
drop_length_low: 25
drop_length_high: 35
drop_count_low: 2
drop_count_high: 2
dim: 2
# Time warp
time_warp: !new:speechbrain.augment.freq_domain.Warping
fea_augment: !new:speechbrain.augment.augmenter.Augmenter
min_augmentations: 3
max_augmentations: 3
augment_prob: 1.0
augmentations: [
!ref <time_drop>,
!ref <freq_drop>,
!ref <time_warp>]
do_speed_perturb: True
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
acc_computer: !name:speechbrain.utils.Accuracy.AccuracyStats
# The pretrainer allows a mapping between pretrained files and instances that
# are declared in the yaml. E.g here, we will download the file lm.ckpt
# and it will be loaded into "lm" which is pointing to the <lm_model> defined
# before.
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
collect_in: !ref <save_folder>
loadables:
lm: !ref <lm_model>
tokenizer: !ref <tokenizer>
paths:
lm: !ref <lm_file>
tokenizer: !ref <tokenizer_file>