
Assignment 2 - Kmeans++

Software Project (0368-2161) Due: 25/06/2023 23:59

1 Introduction

The K-means++ algorithm is used to choose initial centroids for the K-means algorithm. In
this assignment you will implement this algorithm in Python and integrate it with the K-means
algorithm of HW1 that will be ported to a C extension using the C API.
The goals of the assignment are:

• Port your existing C code into a C extension using the C API.

• Experience the Numpy, Pandas and other external packages.

1.1 K-means++

Algorithm 1 k-means++ centroids initialization
1: Choose one center uniformly at random among the data points.
2: For each data point x not chosen yet, compute D(x), the distance between x and the nearest

center that has already been chosen.
3: Choose one new data point at random as a new center, using a weighted probability distri-

bution where a point x is chosen with probability proportional to P (xl) = Dl∑N
m=1Dm

.
4: Repeat Steps 2 and 3 until k centers have been chosen
5: Now that the initial centers have been chosen, proceed using standard k-means clustering.

Algorithm 2 k-means clustering algorithm
1: Initialize centroids as in Algorithm.1
2: repeat
3: Assign every xi to the closest cluster k: argmin

k
d(xi, µk), ∀k 1 ≤ k ≤ K

4: Update the centroids: µk = 1
|k|
∑

xi∈kxi

5: until convergence: (∆µk < ε) OR (iteration_number = iter)

Where:

• d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 · · · (pd − qd)2: More Info: Euclidean Distance.

• ∆µk: Eclidean Distance, between the updated centroid to the previous one. (this should
be checked for every centroid).

• D(x): minimal Eclidean Distance between point x and centroids.

Page 1

https://en.wikipedia.org/wiki/Euclidean_distance

2 Assignment Description

1. kmeans_pp.py: Themain interface of your assignment. It will contain; all of the command-
line argument interface, reading the data, the Numpy, K-means++ implementation, the
interface with your C extension and outputting the results.

2. kmeansmodule.c: A C extension containing your K-means implementation from HW1
with step 1 of the algorithm (finding the initial centroids) replaced by values you’ll pass
from the K-means++ algorithm implemented in kmeans_pp.py.

3. setup.py: The setup file.

2.1 kmeans_pp.py

This is the interface of the program, with the following requirements:

1. Reading user CMD arguments:

• k: Number of required clusters.

• iter: (Optional) argument determines the number of K-means iterations, if not pro-
vided the default value is 300.

• eps: the ε value for convergence 1.1.

• file_name_1: The path to the file 1 that will contain N observations.

• file_name_2: The path to the file 2 that will contain N observations.

•

Input Variable Valid Values Error Message
K 1 < K < N, K ∈ N "Invalid number of clusters!"
iter 1 < iter < 1000, iter ∈ N "Invalid maximum iteration!"

file_name_* txt or .csv file NA 1

1You can assume that it’s valid, and is provided.

2. Combine both input files by inner join using the first column in each file as a key.

3. After join, sort the data points by the ’key’ in ascending order.

4. Implementation of the k-means++ algorithm as detailed in 1.1:

(a) Use Numpy module for implementation.

(b) Set np.random.seed(0)

(c) Use np.random.choice() for random selection.

5. Interfacing with your C extension:

(a) Import C module mykmeanssp

(b) Call the fit() method with passing the initial centroids, the datapoints and other
arguments if needed.

Page 2

(c) Get the final centroids that returned by fit().

6. Outputting the following:

• The first line will be the indices of the observations chosen by the K-means++ algo-
rithm as the initial centroids. Observation’s index is given by the first column in each
input file.

• The second line onwards will be the calculated final centroids from the K-means al-
gorithm, separated by a comma, such that each centroid is in a line of its own as in
HW1.

An example output (assuming K = 3, iter = 100, eps=0.01 and that the initial cen-
troids resulting from the K-means++ algorithm are the 1, 5 and 23 observations):

$python3 kmeans_pp.py 3 100 0.01 input_1.txt input_2.txt
0,4,22
-4.2435,9.1568,5.4105,9.6870,-5.7564,-7.2314
3.3226,-1.3896,-9.1927,-6.0907,-0.9954,-8.7412
8.2239,-8.5714,-8.4985,0.8969,-8.2158,-2.3753

2.2 kmeansmodule.c

In this file you will define your C extension which will be, mainly, your implementation of the K-
means algorithm fromHW1, excluding step 1 which will be replaced by the K-means++ algorithm
result. Requirements of this extension:

1. Start the file with:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

2. The final module (as seen in Python) should be named mykmeanssp.

3. The module API provides a function called fit():

(a) The Function receives the initial centroids, datapoints and other necessary argu-
ments (based on your design).

(b) Skip step 1 from HW1 and run the algorithm from HW1.

(c) Return the centroids.

(d) Write docstring for the method explaining what arguments it expects.

4. Auxiliary code can be implemented in other C files.

2.3 setup.py

This is the build used to create the *.so file (as shown in lesson) that will allow kmeans_pp.py
to import mykmeanssp.

Page 3

2.4 Build and Running

1. The extension must built cleanly (no errors, no warnings) when running the following com-
mand:

$python3 setup.py build_ext --inplace

2. After succefull build, the program must run as detailed in example 2.1.

3. Don’t compile the C module with gcc.

2.5 Assumptions

Note that the following list applies to all code in this assignment:

1. Validate that the command line arguments meets the requirements see Table. 1.

2. Outputs must be formatted to 4 decimal places (use: ’%.4f’) in both languages, for exam-
ple:

• 8.88885⇒ 8.8888

• 5.92237098749999997906⇒ 5.9224

• 2.231⇒ 2.2310

3. 3 input files and their corresponding output files examples are provided within the as-
signment in Moodle. (YES, the files have an extra empty row and this is the expected
behaviour)

4. Handle errors as following:

(a) In case of invalid input, print the relevant message as detailed in Table. 1 and termi-
nate the program.

(b) Else, print "An Error Has Occurred" and terminate.

5. Do not forget to free any memory you allocated.

6. You can assume that all given data points are different.

7. You may not import external includes (in C) or modules (in Python) that are not mentioned
in this document.

8. Use double in C and float in Python for all vector’s elements.

9. Don’t use the key (first column) as vector component while clustering.

Page 4

3 Submission

1. Please submit a file named id1_id2_assignment2.zip via Moodle, where id1 and id2
are the ids of the partners.

(a) In case of individual submission, id2 must be 111111111

2. Put the following files ONLY in a folder called id1_id2_assignment2:

(a) kmeans_pp.py

(b) kmeansmodule.c

(c) setup.py

(d) bonus.py (optional)

(e) more *.c, *.h (optional)

3. Zip the folder using the following Linux cmd:

$zip -r id1_id2_assignment2.zip id1_id2_assignment2

4 Optional Bonus (5 points)

Please note max grade including the bonus is 100 !
This section covers an optional bonus that involves working with matplotlib. The goal of this
bonus is to demonstrate the use of the elbowmethod to determine the optimal number of clusters
for the k-means clustering.

4.0.1 Elbow Method

We will define the quality of the k-means clustering algorithm as the sum of squared distances
of samples to their closest cluster center:

inertia :=
∑N

i=1
(xi − µxi)

2

where µxi is the centroid of the cluster xi is in.
The idea of the elbow method is to run k-means clustering with a range of values of k and for

each value of k calculate the inertia. Then, plot a line chart of the inertia for each corresponding
value of k. If the line chart looks like an arm, then the "elbow" on the arm is the value of k that is
the best. That elbow could be defined as a range of k’s if it is unclear exactly where the elbow
is at. We would like you to plot that line chart on the iris dataset, using the module sklearn . The
iris dataset contains a 4-dimentional 150 observations. Use the load_iris() API to access the
iris dataset. Run the sklearn k-means algorithm (using the k-means++ initialization and with a
random_state=0) for the values of k ranging from k=1 till k=10 and plot the inertia for each value
of k using the matplotlib module.

It will be submitted with the following requirements:

Page 5

1. As a Python file named bonus.py

2. This program will only produce an output elbow.png in the program folder.

3. Doesn’t require any input.

4. Has no tester file to check against.

5. Annotate the chosen k on the plot, where the ‘elbow’ is. See example below:

Page 6

	Introduction
	K-means++

	Assignment Description
	kmeans_pp.py
	kmeansmodule.c
	setup.py
	Build and Running
	Assumptions

	Submission
	Optional Bonus (5 points)
	Elbow Method

