-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_local.py
77 lines (68 loc) · 2.8 KB
/
eval_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import argparse
from gorilla.config import Config
from os.path import join as opj
from utils import *
import torch
from models.openad_pn2 import OpenAD_PN2
def parse_args():
parser = argparse.ArgumentParser(description="Test model on unseen affordances")
parser.add_argument("--OpenAD_config", help="config file path")
parser.add_argument("--OpenAD_checkpoint", help="the dir to saved OpenAD model")
parser.add_argument("--CLPP_checkpoint", help="the dir to saved CLPP model")
parser.add_argument("--CLPP_config", help="config file path")
parser.add_argument(
"--gpu",
type=str,
default=None,
help="Number of gpus to use"
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
cfg = Config.fromfile(args.OpenAD_config)
CLPP_config = Config.fromfile(args.CLPP_config)
logger = IOStream(opj(cfg.work_dir, 'result_' + cfg.model.type + '.log'))
if cfg.get('seed', None) != None:
set_random_seed(cfg.seed)
logger.cprint('Set seed to %d' % cfg.seed)
if args.gpu != None:
cfg.training_cfg.gpu = args.gpu
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.training_cfg.gpu
OpenAD_model = build_model(cfg).cuda()
CLPP_model = build_model(CLPP_config).cuda()
if args.CLPP_checkpoint == None or args.OpenAD_checkpoint == None:
print("Please specify the path to the saved model")
exit()
else:
print("Loading model....")
# Load OpenAD
_, exten = os.path.splitext(args.OpenAD_checkpoint)
print("exten: ", exten)
if exten == '.t7':
OpenAD_model.load_state_dict(torch.load(args.OpenAD_checkpoint))
elif exten == '.pth':
check = torch.load(args.OpenAD_checkpoint)
OpenAD_model.load_state_dict(check['model_state_dict'])
else:
print("Invalid file format")
exit()
# Load CLPP
_, exten = os.path.splitext(args.CLPP_checkpoint)
if exten == '.t7':
CLPP_model.load_state_dict(torch.load(args.CLPP_checkpoint))
elif exten == '.pth':
check = torch.load(args.CLPP_checkpoint)
CLPP_model.load_state_dict(check['model_state_dict'])
else:
print("Invalid file format")
exit()
dataset_dict = build_dataset(cfg)
loader_dict = build_loader(cfg, dataset_dict)
OpenAD_layers = (OpenAD_model.fp3, OpenAD_model.fp2, OpenAD_model.fp1, OpenAD_model.bn1, OpenAD_model.conv1)
CLPP_layers = (CLPP_model.sa1, CLPP_model.sa2, CLPP_model.sa3)
model = OpenAD_PN2.from_checkpoint(CLPP_layers, OpenAD_layers)
val_loader = loader_dict.get("val_loader", None)
val_affordance = cfg.training_cfg.val_affordance
mIoU = evaluation(logger, model, val_loader, val_affordance)