-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscience.py
185 lines (148 loc) · 6.55 KB
/
science.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Analyse the Gaia benchmarks. """
from __future__ import absolute_import, print_function
__author__ = "Andy Casey <arc@ast.cam.ac.uk>"
import os
import logging
import sys
import tarfile
from glob import glob
from time import time
from urllib import urlretrieve
import astropy.table
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import numpy as np
import oracle
logger = logging.getLogger("oracle")
if __name__ != "__main__":
print("This is a script.")
sys.exit(0)
# Download the benchmark data and unpack it.
data_url = "https://zenodo.org/record/15103/files/benchmarks.tar.gz"
record_url = "https://zenodo.org/record/15103/"
if not os.path.exists("DATA/benchmarks/benchmarks.csv"):
logger.info("Downloading {0}".format(data_url))
try:
urlretrieve(data_url, "benchmarks.tar.gz")
except IOError:
logger.exception(
"Error downloading benchmark data from {0}".format(data_url))
raise
else:
with tarfile.open("benchmarks.tar.gz") as tar:
tar.extractall()
# Load the benchmarks.
results = []
benchmarks = astropy.table.Table.read("DATA/benchmarks/benchmarks.csv")
for benchmark in benchmarks:
star = benchmark["star"]
filenames = glob("DATA/benchmarks/{}/*.txt".format(star))
if len(filenames) == 0:
logger.info("Skipping {0} because no data files found".format(star))
continue
logger.info("Solving for {0:} ({1:.0f}, {2:.2f}"
", {3:.2f})".format(star, benchmark["effective_temperature"],
benchmark["surface_gravity"], benchmark["metallicity"]))
# Load the model and the data.
data = map(oracle.specutils.Spectrum1D.load, filenames)
model = oracle.models.EqualibriaModel("galah.yaml")
t = time()
initial_theta = model.initial_theta(data)
t_initial = time() - t
t = time()
stellar_parameters = model.estimate_stellar_parameters(data,
initial_theta=initial_theta)
t_estimate = time() - t
results.append([
star,
benchmark["effective_temperature"],
benchmark["surface_gravity"],
benchmark["metallicity"],
initial_theta["effective_temperature"],
initial_theta["surface_gravity"],
initial_theta["metallicity"],
t_initial,
stellar_parameters["effective_temperature"],
stellar_parameters["surface_gravity"],
stellar_parameters["metallicity"],
stellar_parameters["microturbulence"],
t_estimate
])
logger.info("Took {0:.1f} seconds to solve for {1}".format(t_estimate + t_initial, star))
logger.info("Literature for {0:} ({1:.0f}, {2:.2f}"
", {3:.2f})".format(star, benchmark["effective_temperature"],
benchmark["surface_gravity"], benchmark["metallicity"]))
# Create a results file in markdown
markdown = \
"""
The [Gaia benchmark spectra]({record_url}) were downloaded and analysed using commit {{commit_sha}}. Literature (leftmost) values are from [Jofre et al. (2014)](http://arxiv.org/pdf/1309.1099v2.pdf).
**Initial Parameters**
Initial stellar parameters, velocities, and continuum coefficients were first estimated by cross-correlation against a grid of models:
Star | Teff | logg | [Fe/H] | Teff [ccf] | logg [ccf] | [Fe/H] [ccf] | Time |
:----|:----:|:----:|:------:|:----------:|:----------:|:------------:|:----:|
|**(K)**|**(cgs)**| | **(K)** | **(cgs)** | |**(sec)**|
""".format(record_url=record_url)
for row in results:
markdown += "{0} | {1:.0f} | {2:.3f} | {3:+.3f} | {4:.0f} | {5:.2f} | {6:+.2f}"\
" | {7:.1f}\n".format(*row)
# Add another table for the final values.
markdown += \
"""
**Equalibrium Parameters**
Spectra were synthesised around each line and an equalibrium balance was performed using the [Stagger-Grid](https://staggergrid.wordpress.com/) ⟨3D⟩ (mass density) photospheres in [MOOG](http://www.as.utexas.edu/~chris/moog.html).
Star | Teff | logg | [Fe/H] | Teff [eq] | logg [eq] | [Fe/H] [eq] | xi [eq] | Time |
:----|:----:|:----:|:------:|:---------:|:---------:|:-----------:|:-------:|:----:|
|**(K)**|**(cgs)**| | **(K)** | **(cgs)** | |**(km/s)**|**(sec)**|
"""
for row in results:
_ = row[:4] + row[8:]
markdown += "{0} | {1:.0f} | {2:.3f} | {3:+.3f} | {4:.0f} | {5:.2f} | {6:+.2f}"\
" | {7:.2f} | {8:.1f}\n".format(*_)
# Create a results table for easier plottingg
results_table = astropy.table.Table(rows=results,
names=["Star", "Teff_lit", "logg_lit", "[Fe/H]_lit", "Teff_ccf", "logg_ccf",
"[Fe/H]_ccf", "Time_ccf", "Teff_eq", "logg_eq", "[Fe/H]_eq", "xi", "Time_eq"])
# Make a difference plot
fig, ax = plt.subplots(3)
ax[0].scatter(results_table["Teff_lit"], results_table["Teff_ccf"]-results_table["Teff_lit"], facecolor="k")
ax[0].scatter(results_table["Teff_lit"], results_table["Teff_eq"]-results_table["Teff_lit"], facecolor="r")
ax[0].axhline(0, ls=":", c="#666666")
ax[0].set_xlabel("$T_{\\rm eff}$ (K)")
ax[0].set_ylabel("$\Delta{}T_{\\rm eff}$ (K)")
_ = np.max(np.abs(ax[0].get_ylim()))
ax[0].set_ylim(-_, +_)
ax[0].yaxis.set_major_locator(MaxNLocator(5))
ax[1].scatter(results_table["logg_lit"], results_table["logg_ccf"]-results_table["logg_lit"], facecolor="k")
ax[1].scatter(results_table["logg_lit"], results_table["logg_eq"]-results_table["logg_lit"], facecolor="r")
ax[1].axhline(0, ls=":", c="#666666")
ax[1].set_xlabel("$\log{g}$")
ax[1].set_ylabel("$\Delta{}\log{g}$ (dex)")
_ = np.max(np.abs(ax[1].get_ylim()))
ax[1].set_ylim(-_, +_)
ax[1].yaxis.set_major_locator(MaxNLocator(5))
ax[2].scatter(results_table["[Fe/H]_lit"], results_table["[Fe/H]_ccf"]-results_table["[Fe/H]_lit"], facecolor="k")
ax[2].scatter(results_table["[Fe/H]_lit"], results_table["[Fe/H]_eq"]-results_table["[Fe/H]_lit"], facecolor="r")
ax[2].axhline(0, ls=":", c="#666666")
ax[2].set_xlabel("[Fe/H]")
ax[2].set_ylabel("$\Delta{}{\\rm [Fe/H]}$ (dex)")
_ = np.max(np.abs(ax[2].get_ylim()))
ax[2].set_ylim(-_, +_)
ax[2].yaxis.set_major_locator(MaxNLocator(5))
fig.tight_layout()
fig.savefig("benchmarks.png")
# Try to upload the figure to Imgur
try:
import pyimgur
imgur = pyimgur.Imgur(os.environ.get("IMGUR_CLIENT_ID", None))
uploaded_image = imgur.upload_image("benchmarks.png")
except BaseException as e:
logger.exception("Could not upload benchmarks image to Imgur")
markdown += "\n\nError uploading figures to Imgur ({0}: {1})".format(
e.errno, e.strerror)
else:
markdown += "\n\n![Benchmark results]({})".format(uploaded_image.link)
# Save the markdown to file.
with open("results.md", "w") as fp:
fp.write(markdown)