Skip to content

Latest commit

 

History

History
528 lines (445 loc) · 14.6 KB

0046.全排列.md

File metadata and controls

528 lines (445 loc) · 14.6 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

46.全排列

力扣题目链接

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

思路

如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。

此时我们已经学习了77.组合问题131.分割回文串78.子集问题,接下来看一看排列问题。

相信这个排列问题就算是让你用for循环暴力把结果搜索出来,这个暴力也不是很好写。

所以正如我们在关于回溯算法,你该了解这些!所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?

因为一些问题能暴力搜出来就已经很不错了!

我以[1,2,3]为例,抽象成树形结构如下:

46.全排列

回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.size()) {
    result.push_back(path);
    return;
}
  • 单层搜索的逻辑

这里和77.组合问题131.切割问题78.子集问题最大的不同就是for循环里不用startIndex了。

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.size(); i++) {
    if (used[i] == true) continue; // path里已经收录的元素,直接跳过
    used[i] = true;
    path.push_back(nums[i]);
    backtracking(nums, used);
    path.pop_back();
    used[i] = false;
}

整体C++代码如下:

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (used[i] == true) continue; // path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

总结

大家此时可以感受出排列问题的不同:

  • 每层都是从0开始搜索而不是startIndex
  • 需要used数组记录path里都放了哪些元素了

排列问题是回溯算法解决的经典题目,大家可以好好体会体会。

其他语言版本

Java

class Solution {

    List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
    boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        if (nums.length == 0){
            return result;
        }
        used = new boolean[nums.length];
        permuteHelper(nums);
        return result;
    }

    private void permuteHelper(int[] nums){
        if (path.size() == nums.length){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++){
            if (used[i]){
                continue;
            }
            used[i] = true;
            path.add(nums[i]);
            permuteHelper(nums);
            path.removeLast();
            used[i] = false;
        }
    }
}
// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> permute(int[] nums) {
        if (nums.length == 0) return result;
        backtrack(nums, path);
        return result;
    }
    public void backtrack(int[] nums, LinkedList<Integer> path) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
        }
        for (int i =0; i < nums.length; i++) {
            // 如果path中已有,则跳过
            if (path.contains(nums[i])) {
                continue;
            } 
            path.add(nums[i]);
            backtrack(nums, path);
            path.removeLast();
        }
    }
}

Python

回溯

class Solution:
    def __init__(self):
        self.path = []
        self.paths = []

    def permute(self, nums: List[int]) -> List[List[int]]:
        '''
        因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用(usage_list)
        所以处理排列问题每层都需要从头搜索,故不再使用start_index
        '''
        usage_list = [False] * len(nums)
        self.backtracking(nums, usage_list)
        return self.paths

    def backtracking(self, nums: List[int], usage_list: List[bool]) -> None:
        # Base Case本题求叶子节点
        if len(self.path) == len(nums):
            self.paths.append(self.path[:])
            return

        # 单层递归逻辑
        for i in range(0, len(nums)):  # 从头开始搜索
            # 若遇到self.path里已收录的元素,跳过
            if usage_list[i] == True:
                continue
            usage_list[i] = True
            self.path.append(nums[i])
            self.backtracking(nums, usage_list)     # 纵向传递使用信息,去重
            self.path.pop()
            usage_list[i] = False

回溯+丢掉usage_list

class Solution:
    def __init__(self):
        self.path = []
        self.paths = []

    def permute(self, nums: List[int]) -> List[List[int]]:
        '''
        因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用
        所以处理排列问题每层都需要从头搜索,故不再使用start_index
        '''
        self.backtracking(nums)
        return self.paths

    def backtracking(self, nums: List[int]) -> None:
        # Base Case本题求叶子节点
        if len(self.path) == len(nums):
            self.paths.append(self.path[:])
            return

        # 单层递归逻辑
        for i in range(0, len(nums)):  # 从头开始搜索
            # 若遇到self.path里已收录的元素,跳过
            if nums[i] in self.path:
                continue
            self.path.append(nums[i])
            self.backtracking(nums)
            self.path.pop()

Go

var (
    res [][]int
    path  []int
    st    []bool   // state的缩写
)
func permute(nums []int) [][]int {
    res, path = make([][]int, 0), make([]int, 0, len(nums))
    st = make([]bool, len(nums))
    dfs(nums, 0)
    return res
}

func dfs(nums []int, cur int) {
    if cur == len(nums) {
        tmp := make([]int, len(path))
        copy(tmp, path)
        res = append(res, tmp)
    }
    for i := 0; i < len(nums); i++ {
        if !st[i] {
            path = append(path, nums[i])
            st[i] = true
            dfs(nums, cur + 1)
            st[i] = false
            path = path[:len(path)-1]
        }
    }
}

Javascript

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function(nums) {
    const res = [], path = [];
    backtracking(nums, nums.length, []);
    return res;
    
    function backtracking(n, k, used) {
        if(path.length === k) {
            res.push(Array.from(path));
            return;
        }
        for (let i = 0; i < k; i++ ) {
            if(used[i]) continue;
            path.push(n[i]);
            used[i] = true; // 同支
            backtracking(n, k, used);
            path.pop();
            used[i] = false;
        }
    }
};

TypeScript

function permute(nums: number[]): number[][] {
    const resArr: number[][] = [];
    const helperSet: Set<number> = new Set();
    backTracking(nums, []);
    return resArr;
    function backTracking(nums: number[], route: number[]): void {
        if (route.length === nums.length) {
            resArr.push([...route]);
            return;
        }
        let tempVal: number;
        for (let i = 0, length = nums.length; i < length; i++) {
            tempVal = nums[i];
            if (!helperSet.has(tempVal)) {
                route.push(tempVal);
                helperSet.add(tempVal);
                backTracking(nums, route);
                route.pop();
                helperSet.delete(tempVal);
            }
        }
    }
};

Rust

impl Solution {
    fn backtracking(result: &mut Vec<Vec<i32>>, path: &mut Vec<i32>, nums: &Vec<i32>, used: &mut Vec<bool>) {
        let len = nums.len();
        if path.len() == len {
            result.push(path.clone());
            return;
        }
        for i in 0..len {
            if used[i] == true { continue; }
            used[i] = true;
            path.push(nums[i]);
            Self::backtracking(result, path, nums, used);
            path.pop();
            used[i] = false;
        }
    }

    pub fn permute(nums: Vec<i32>) -> Vec<Vec<i32>> {
        let mut result: Vec<Vec<i32>> = Vec::new();
        let mut path: Vec<i32> = Vec::new();
        let mut used = vec![false; nums.len()];
        Self::backtracking(&mut result, &mut path, &nums, &mut used);
        result
    }
}

C

int* path;
int pathTop;
int** ans;
int ansTop;

//将used中元素都设置为0
void initialize(int* used, int usedLength) {
    int i;
    for(i = 0; i < usedLength; i++) {
        used[i] = 0;
    }
}

//将path中元素拷贝到ans中
void copy() {
    int* tempPath = (int*)malloc(sizeof(int) * pathTop);
    int i;
    for(i = 0; i < pathTop; i++) {
        tempPath[i] = path[i];
    }
    ans[ansTop++] = tempPath;
}

void backTracking(int* nums, int numsSize, int* used) {
    //若path中元素个数等于nums元素个数,将nums放入ans中
    if(pathTop == numsSize) {
        copy();
        return;
    }
    int i;
    for(i = 0; i < numsSize; i++) {
        //若当前下标中元素已使用过,则跳过当前元素
        if(used[i])
            continue;
        used[i] = 1;
        path[pathTop++] = nums[i];
        backTracking(nums, numsSize, used);
        //回溯
        pathTop--;
        used[i] = 0;
    }
}

int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){
    //初始化辅助变量
    path = (int*)malloc(sizeof(int) * numsSize);
    ans = (int**)malloc(sizeof(int*) * 1000);
    int* used = (int*)malloc(sizeof(int) * numsSize);
    //将used数组中元素都置0
    initialize(used, numsSize);
    ansTop = pathTop = 0;

    backTracking(nums, numsSize, used);

    //设置path和ans数组的长度
    *returnSize = ansTop;
    *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
    int i;
    for(i = 0; i < ansTop; i++) {
        (*returnColumnSizes)[i] = numsSize;
    }
    return ans;
}

Swift

func permute(_ nums: [Int]) -> [[Int]] {
    var result = [[Int]]()
    var path = [Int]()
    var used = [Bool](repeating: false, count: nums.count) // 记录path中已包含的元素
    func backtracking() {
        // 结束条件,收集结果
        if path.count == nums.count {
            result.append(path)
            return
        }

        for i in 0 ..< nums.count {
            if used[i] { continue } // 排除已包含的元素
            used[i] = true
            path.append(nums[i])
            backtracking()
            // 回溯
            path.removeLast()
            used[i] = false
        }
    }
    backtracking()
    return result
}

Scala

object Solution {
  import scala.collection.mutable
  def permute(nums: Array[Int]): List[List[Int]] = {
    var result = mutable.ListBuffer[List[Int]]()
    var path = mutable.ListBuffer[Int]()

    def backtracking(used: Array[Boolean]): Unit = {
      if (path.size == nums.size) {
        // 如果path的长度和nums相等,那么可以添加到结果集
        result.append(path.toList)
        return
      }
      // 添加循环守卫,只有当当前数字没有用过的情况下才进入回溯
      for (i <- nums.indices if used(i) == false) {
        used(i) = true
        path.append(nums(i))
        backtracking(used) // 回溯
        path.remove(path.size - 1)
        used(i) = false
      }
    }

    backtracking(new Array[Boolean](nums.size)) // 调用方法
    result.toList // 最终返回结果集的List形式
  }
}