-
Notifications
You must be signed in to change notification settings - Fork 36
/
robustfit_cor.m
52 lines (48 loc) · 2.08 KB
/
robustfit_cor.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function beta = robustfit_cor(X,y)
%ROBUSTFIT Robust linear regression
%Corrected 1.0 version (Zhe 04/06/2013)
% B = ROBUSTFIT(X,Y) returns the vector B of regression coefficients,
% obtained by performing robust regression to estimate the linear model
% Y = Xb. X is an n-by-p matrix of predictor variables, and Y is an
% n-by-1 vector of observations. The algorithm uses iteratively
% reweighted least squares with the bisquare weighting function. By
% default, ROBUSTFIT adds a column of ones to X, corresponding to a
% constant term in the first element of B. Do not enter a column of ones
% directly into the X matrix.
%
% The ROBUSTFIT function estimates the variance-covariance matrix of the
% coefficient estimates as V=inv(X'*X)*STATS.S^2. The standard errors
% and correlations are derived from V.
%
% ROBUSTFIT treats NaNs in X or Y as missing values, and removes them.
%
% Example:
% x = (1:10)';
% y = 10 - 2*x + randn(10,1); y(10) = 0;
% bls = regress(y,[ones(10,1) x])
% brob = robustfit(x,y)
% scatter(x,y)
% hold on
% plot(x,brob(1)+brob(2)*x,'r-', x,bls(1)+bls(2)*x,'m:')
%
% See also REGRESS, ROBUSTDEMO.
% References:
% DuMouchel, W.H., and F.L. O'Brien (1989), "Integrating a robust
% option into a multiple regression computing environment,"
% Computer Science and Statistics: Proceedings of the 21st
% Symposium on the Interface, American Statistical Association.
% Holland, P.W., and R.E. Welsch (1977), "Robust regression using
% iteratively reweighted least-squares," Communications in
% Statistics - Theory and Methods, v. A6, pp. 813-827.
% Huber, P.J. (1981), Robust Statistics, New York: Wiley.
% Street, J.O., R.J. Carroll, and D. Ruppert (1988), "A note on
% computing robust regression estimates via iteratively
% reweighted least squares," The American Statistician, v. 42,
% pp. 152-154.
wfun = @bisquare;
tune = 4.685;
% varargout=cell(1,max(1,nargout));
beta = statrobustfit_cor(X,y,wfun,tune);
% --------- weight functions
function w = bisquare(r)
w = (abs(r)<1) .* (1 - r.^2).^2;