-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
117 lines (99 loc) · 4.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import torch
import torchfile
import os
import scipy.io as sio
import cv2
import math
from math import cos, sin
def softmax_temperature(tensor, temperature):
result = torch.exp(tensor / temperature)
result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result))
return result
def get_pose_params_from_mat(mat_path):
# This functions gets the pose parameters from the .mat
# Annotations that come with the Pose_300W_LP dataset.
mat = sio.loadmat(mat_path)
# [pitch yaw roll tdx tdy tdz scale_factor]
pre_pose_params = mat['Pose_Para'][0]
# Get [pitch, yaw, roll, tdx, tdy]
pose_params = pre_pose_params[:5]
return pose_params
def get_ypr_from_mat(mat_path):
# Get yaw, pitch, roll from .mat annotation.
# They are in radians
mat = sio.loadmat(mat_path)
# [pitch yaw roll tdx tdy tdz scale_factor]
pre_pose_params = mat['Pose_Para'][0]
# Get [pitch, yaw, roll]
pose_params = pre_pose_params[:3]
return pose_params
def get_pt2d_from_mat(mat_path):
# Get 2D landmarks
mat = sio.loadmat(mat_path)
pt2d = mat['pt2d']
return pt2d
def mse_loss(input, target):
return torch.sum(torch.abs(input.data - target.data) ** 2)
def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.):
# Input is a cv2 image
# pose_params: (pitch, yaw, roll, tdx, tdy)
# Where (tdx, tdy) is the translation of the face.
# For pose we have [pitch yaw roll tdx tdy tdz scale_factor]
p = pitch * np.pi / 180
y = -(yaw * np.pi / 180)
r = roll * np.pi / 180
if tdx != None and tdy != None:
face_x = tdx - 0.50 * size
face_y = tdy - 0.50 * size
else:
height, width = img.shape[:2]
face_x = width / 2 - 0.5 * size
face_y = height / 2 - 0.5 * size
x1 = size * (cos(y) * cos(r)) + face_x
y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y
x2 = size * (-cos(y) * sin(r)) + face_x
y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y
x3 = size * (sin(y)) + face_x
y3 = size * (-cos(y) * sin(p)) + face_y
# Draw base in red
cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3)
cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3)
cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3)
cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3)
# Draw pillars in blue
cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2)
cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2)
cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2)
cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2)
# Draw top in green
cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2)
cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2)
cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2)
return img
def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100):
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = img.shape[:2]
tdx = width / 2
tdy = height / 2
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
# v
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),3)
cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),3)
cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),2)
return img