-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_compoundnet_HRA.py
53 lines (37 loc) · 2.48 KB
/
train_compoundnet_HRA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""Abstract script for two-phase training of CompoundNet on the HRA dataset.
Example
--------
>>> python train_compoundnet_HRA.py --object_centric_model VGG16 --fusion_strategy average --pooling_mode avg
# Reference:
- [Exploring object-centric and scene-centric CNN features and their complementarity for human rights violations recognition in images](https://arxiv.org/pdf/1805.04714.pdf)
"""
from __future__ import print_function
from engine.hra_compoundNet import compoundNet_feature_extraction, compoundNet_fine_tuning
import argparse
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--object_centric_model", type = str,help = 'One of `VGG16`, `VGG19` or `ResNet50`')
parser.add_argument("--scene_centric_model", type=str, default = 'VGG16_Places365', help='Only `VGG16_Places365` at the moment')
parser.add_argument("--fusion_strategy", type=str, help='one of `concatenate`, `average` or `maximum` ')
parser.add_argument("--pooling_mode", type = str, help = 'One of `avg`, `max`, or `flatten`')
parser.add_argument("--data_augm_enabled", type = bool, default = False, help = 'Whether to augment the samples during training or not')
args = parser.parse_args()
return args
# --------- Configure and pass a tensorflow session to Keras to restrict GPU memory fraction --------- #
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.50
set_session(tf.Session(config=config))
args = get_args()
first_phase_model = compoundNet_feature_extraction(object_centric_model=args.object_centric_model,
scene_centric_model=args.scene_centric_model,
fusion_strategy=args.fusion_strategy,
pooling_mode=args.pooling_mode,
data_augm_enabled=args.data_augm_enabled)
second_phase_model = compoundNet_fine_tuning(first_phase_model,
object_centric_model=args.object_centric_model,
scene_centric_model=args.scene_centric_model,
fusion_strategy=args.fusion_strategy,
pooling_mode=args.pooling_mode,
data_augm_enabled=args.data_augm_enabled)