-
Notifications
You must be signed in to change notification settings - Fork 13
/
eval_textBPN.py
198 lines (162 loc) · 6.76 KB
/
eval_textBPN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import time
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data as data
from dataset import TotalText, Ctw1500Text, Icdar15Text, Mlt2017Text, TD500Text
from network.textnet import TextNet
from util.augmentation import BaseTransform
from cfglib.config import config as cfg, update_config, print_config
from cfglib.option import BaseOptions
from util.visualize import visualize_detection, visualize_gt
from util.misc import to_device, mkdirs,rescale_result
from util.eval import deal_eval_total_text, deal_eval_ctw1500, deal_eval_icdar15, \
deal_eval_TD500, data_transfer_ICDAR, data_transfer_TD500, data_transfer_MLT2017
import multiprocessing
multiprocessing.set_start_method("spawn", force=True)
def osmkdir(out_dir):
import shutil
if os.path.exists(out_dir):
shutil.rmtree(out_dir)
os.makedirs(out_dir)
def write_to_file(contours, file_path):
"""
:param contours: [[x1, y1], [x2, y2]... [xn, yn]]
:param file_path: target file path
"""
# according to total-text evaluation method, output file shoud be formatted to: y0,x0, ..... yn,xn
with open(file_path, 'w') as f:
for cont in contours:
cont = np.stack([cont[:, 0], cont[:, 1]], 1)
cont = cont.flatten().astype(str).tolist()
cont = ','.join(cont)
f.write(cont + '\n')
def inference(model, test_loader, output_dir):
total_time = 0.
if cfg.exp_name != "MLT2017":
osmkdir(output_dir)
else:
if not os.path.exists(output_dir):
mkdirs(output_dir)
for i, (image, meta) in enumerate(test_loader):
input_dict = dict()
input_dict['img'] = to_device(image)
# get detection result
start = time.time()
torch.cuda.synchronize()
output_dict = model(input_dict)
end = time.time()
if i > 0:
total_time += end - start
fps = (i + 1) / total_time
else:
fps = 0.0
idx = 0 # test mode can only run with batch_size == 1
print('detect {} / {} images: {}.'.format(i + 1, len(test_loader), meta['image_id'][idx]))
# visualization
img_show = image[idx].permute(1, 2, 0).cpu().numpy()
img_show = ((img_show * cfg.stds + cfg.means) * 255).astype(np.uint8)
show_boundary, heat_map = visualize_detection(img_show, output_dict, meta=meta)
contours = output_dict["py_preds"][-1].int().cpu().numpy()
gt_contour = []
label_tag = meta['label_tag'][idx].int().cpu().numpy()
for annot, n_annot in zip(meta['annotation'][idx], meta['n_annotation'][idx]):
if n_annot.item() > 0:
gt_contour.append(annot[:n_annot].int().cpu().numpy())
gt_vis = visualize_gt(img_show, gt_contour, label_tag)
show_map = np.concatenate([heat_map, gt_vis], axis=1)
show_map = cv2.resize(show_map, (320 * 3, 320))
im_vis = np.concatenate([show_map, show_boundary], axis=0)
path = os.path.join(cfg.vis_dir, '{}_test'.format(cfg.exp_name), meta['image_id'][idx].split(".")[0]+".jpg")
cv2.imwrite(path, im_vis)
H, W = meta['Height'][idx].item(), meta['Width'][idx].item()
img_show, contours = rescale_result(img_show, contours, H, W)
# write to file
if cfg.exp_name == "Icdar2015":
fname = "res_" + meta['image_id'][idx].replace('jpg', 'txt')
contours = data_transfer_ICDAR(contours)
write_to_file(contours, os.path.join(output_dir, fname))
elif cfg.exp_name == "MLT2017":
out_dir = os.path.join(output_dir, str(cfg.checkepoch))
if not os.path.exists(out_dir):
mkdirs(out_dir)
fname = meta['image_id'][idx].split("/")[-1].replace('ts', 'res')
fname = fname.split(".")[0] + ".txt"
data_transfer_MLT2017(contours, os.path.join(out_dir, fname))
elif cfg.exp_name == "TD500":
fname = "res_" + meta['image_id'][idx].split(".")[0]+".txt"
data_transfer_TD500(contours, os.path.join(output_dir, fname))
else:
fname = meta['image_id'][idx].replace('jpg', 'txt')
write_to_file(contours, os.path.join(output_dir, fname))
def main(vis_dir_path):
osmkdir(vis_dir_path)
if cfg.exp_name == "Totaltext":
testset = TotalText(
data_root='data/total-text-mat',
ignore_list=None,
is_training=False,
transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds)
)
elif cfg.exp_name == "Ctw1500":
testset = Ctw1500Text(
data_root='data/ctw1500',
is_training=False,
transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds)
)
elif cfg.exp_name == "Icdar2015":
testset = Icdar15Text(
data_root='data/Icdar2015',
is_training=False,
transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds)
)
elif cfg.exp_name == "MLT2017":
testset = Mlt2017Text(
data_root='data/MLT2017',
is_training=False,
transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds)
)
elif cfg.exp_name == "TD500":
testset = TD500Text(
data_root='data/TD500',
is_training=False,
transform=BaseTransform(size=cfg.test_size, mean=cfg.means, std=cfg.stds)
)
else:
print("{} is not justify".format(cfg.exp_name))
test_loader = data.DataLoader(testset, batch_size=1, shuffle=False, num_workers=cfg.num_workers)
# Model
model = TextNet(is_training=False, backbone=cfg.net)
model_path = os.path.join(cfg.save_dir, cfg.exp_name,
'TextBPN_{}_{}.pth'.format(model.backbone_name, cfg.checkepoch))
model.load_model(model_path)
model = model.to(cfg.device) # copy to cuda
model.eval()
if cfg.cuda:
cudnn.benchmark = True
print('Start testing TextBPN.')
output_dir = os.path.join(cfg.output_dir, cfg.exp_name)
inference(model, test_loader, output_dir)
if cfg.exp_name == "Totaltext":
deal_eval_total_text(debug=True)
elif cfg.exp_name == "Ctw1500":
deal_eval_ctw1500(debug=True)
elif cfg.exp_name == "Icdar2015":
deal_eval_icdar15(debug=True)
elif cfg.exp_name == "TD500":
deal_eval_TD500(debug=True)
else:
print("{} is not justify".format(cfg.exp_name))
if __name__ == "__main__":
# parse arguments
option = BaseOptions()
args = option.initialize()
update_config(cfg, args)
print_config(cfg)
vis_dir = os.path.join(cfg.vis_dir, '{}_test'.format(cfg.exp_name))
if not os.path.exists(vis_dir):
mkdirs(vis_dir)
# main
main(vis_dir)