-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
process.py
1545 lines (1250 loc) · 51 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
import ctypes
import errno
import logging
import os
import select
import signal
import stat
import subprocess
import sys
import time
from collections import namedtuple
IS_WINDOWS = sys.platform.startswith('win')
if IS_WINDOWS:
import queue
import threading
else:
import fcntl
import pty
import resource
import tty
from pwnlib import qemu
from pwnlib.context import context
from pwnlib.log import getLogger
from pwnlib.timeout import Timeout
from pwnlib.tubes.tube import tube
from pwnlib.util.hashes import sha256file
from pwnlib.util.misc import parse_ldd_output
from pwnlib.util.misc import which
from pwnlib.util.misc import normalize_argv_env
from pwnlib.util.packing import _decode
log = getLogger(__name__)
class PTY(object): pass
PTY=PTY()
STDOUT = subprocess.STDOUT
PIPE = subprocess.PIPE
signal_names = {-v:k for k,v in signal.__dict__.items() if k.startswith('SIG')}
class process(tube):
r"""
Spawns a new process, and wraps it with a tube for communication.
Arguments:
argv(list):
List of arguments to pass to the spawned process.
shell(bool):
Set to `True` to interpret `argv` as a string
to pass to the shell for interpretation instead of as argv.
executable(str):
Path to the binary to execute. If :const:`None`, uses ``argv[0]``.
Cannot be used with ``shell``.
cwd(str):
Working directory. Uses the current working directory by default.
env(dict):
Environment variables to add to the environment.
ignore_environ(bool):
Ignore Python's environment. By default use Python's environment iff env not specified.
stdin(int):
File object or file descriptor number to use for ``stdin``.
By default, a pipe is used. A pty can be used instead by setting
this to ``PTY``. This will cause programs to behave in an
interactive manner (e.g.., ``python`` will show a ``>>>`` prompt).
If the application reads from ``/dev/tty`` directly, use a pty.
stdout(int):
File object or file descriptor number to use for ``stdout``.
By default, a pty is used so that any stdout buffering by libc
routines is disabled.
May also be ``PIPE`` to use a normal pipe.
stderr(int):
File object or file descriptor number to use for ``stderr``.
By default, ``STDOUT`` is used.
May also be ``PIPE`` to use a separate pipe,
although the :class:`pwnlib.tubes.tube.tube` wrapper will not be able to read this data.
close_fds(bool):
Close all open file descriptors except stdin, stdout, stderr.
By default, :const:`True` is used.
preexec_fn(callable):
Callable to invoke immediately before calling ``execve``.
raw(bool):
Set the created pty to raw mode (i.e. disable echo and control
characters). :const:`True` by default. If no pty is created, this
has no effect.
aslr(bool):
If set to :const:`False`, disable ASLR via ``personality`` (``setarch -R``)
and ``setrlimit`` (``ulimit -s unlimited``).
This disables ASLR for the target process. However, the ``setarch``
changes are lost if a ``setuid`` binary is executed.
The default value is inherited from ``context.aslr``.
See ``setuid`` below for additional options and information.
setuid(bool):
Used to control `setuid` status of the target binary, and the
corresponding actions taken.
By default, this value is :const:`None`, so no assumptions are made.
If :const:`True`, treat the target binary as ``setuid``.
This modifies the mechanisms used to disable ASLR on the process if
``aslr=False``.
This is useful for debugging locally, when the exploit is a
``setuid`` binary.
If :const:`False`, prevent ``setuid`` bits from taking effect on the
target binary. This is only supported on Linux, with kernels v3.5
or greater.
where(str):
Where the process is running, used for logging purposes.
display(list):
List of arguments to display, instead of the main executable name.
alarm(int):
Set a SIGALRM alarm timeout on the process.
creationflags(int):
Windows only. Flags to pass to ``CreateProcess``.
Examples:
>>> p = process('python')
>>> p.sendline(b"print('Hello world')")
>>> p.sendline(b"print('Wow, such data')")
>>> b'' == p.recv(timeout=0.01)
True
>>> p.shutdown('send')
>>> p.proc.stdin.closed
True
>>> p.connected('send')
False
>>> p.recvline()
b'Hello world\n'
>>> p.recvuntil(b',')
b'Wow,'
>>> p.recvregex(b'.*data')
b' such data'
>>> p.recv()
b'\n'
>>> p.recv() # doctest: +ELLIPSIS
Traceback (most recent call last):
...
EOFError
>>> p = process('cat')
>>> d = open('/dev/urandom', 'rb').read(4096)
>>> p.recv(timeout=0.1)
b''
>>> p.write(d)
>>> p.recvrepeat(0.1) == d
True
>>> p.recv(timeout=0.1)
b''
>>> p.shutdown('send')
>>> p.wait_for_close()
>>> p.poll()
0
>>> p = process('cat /dev/zero | head -c8', shell=True, stderr=open('/dev/null', 'w+b'))
>>> p.recv()
b'\x00\x00\x00\x00\x00\x00\x00\x00'
>>> p = process(['python','-c','import os; print(os.read(2,1024).decode())'],
... preexec_fn = lambda: os.dup2(0,2))
>>> p.sendline(b'hello')
>>> p.recvline()
b'hello\n'
>>> stack_smashing = ['python','-c','open("/dev/tty","wb").write(b"stack smashing detected")']
>>> process(stack_smashing).recvall()
b'stack smashing detected'
>>> process(stack_smashing, stdout=PIPE).recvall()
b''
>>> getpass = ['python','-c','import getpass; print(getpass.getpass("XXX"))']
>>> p = process(getpass, stdin=PTY)
>>> p.recv()
b'XXX'
>>> p.sendline(b'hunter2')
>>> p.recvall()
b'\nhunter2\n'
>>> process('echo hello 1>&2', shell=True).recvall()
b'hello\n'
>>> process('echo hello 1>&2', shell=True, stderr=PIPE).recvall()
b''
>>> a = process(['cat', '/proc/self/maps']).recvall()
>>> b = process(['cat', '/proc/self/maps'], aslr=False).recvall()
>>> with context.local(aslr=False):
... c = process(['cat', '/proc/self/maps']).recvall()
>>> a == b
False
>>> b == c
True
>>> process(['sh','-c','ulimit -s'], aslr=0).recvline()
b'unlimited\n'
>>> io = process(['sh','-c','sleep 10; exit 7'], alarm=2)
>>> io.poll(block=True) == -signal.SIGALRM
True
>>> binary = ELF.from_assembly('nop', arch='mips')
>>> p = process(binary.path)
>>> binary_dir, binary_name = os.path.split(binary.path)
>>> p = process('./{}'.format(binary_name), cwd=binary_dir)
>>> p = process(binary.path, cwd=binary_dir)
>>> p = process('./{}'.format(binary_name), cwd=os.path.relpath(binary_dir))
>>> p = process(binary.path, cwd=os.path.relpath(binary_dir))
"""
STDOUT = STDOUT
PIPE = PIPE
PTY = PTY
#: Have we seen the process stop? If so, this is a unix timestamp.
_stop_noticed = 0
proc = None
def __init__(self, argv = None,
shell = False,
executable = None,
cwd = None,
env = None,
ignore_environ = None,
stdin = PIPE,
stdout = PTY if not IS_WINDOWS else PIPE,
stderr = STDOUT,
close_fds = True,
preexec_fn = lambda: None,
raw = True,
aslr = None,
setuid = None,
where = 'local',
display = None,
alarm = None,
creationflags = 0,
*args,
**kwargs
):
super(process, self).__init__(*args,**kwargs)
# Permit using context.binary
if argv is None:
if context.binary:
argv = [context.binary.path]
else:
raise TypeError('Must provide argv or set context.binary')
if IS_WINDOWS and PTY in (stdin, stdout, stderr):
raise NotImplementedError("ConPTY isn't implemented yet")
#: :class:`subprocess.Popen` object that backs this process
self.proc = None
# We need to keep a copy of the un-_validated environment for printing
original_env = env
if shell:
executable_val, argv_val, env_val = executable, argv, env
if executable is None:
if IS_WINDOWS:
executable_val = os.environ.get('ComSpec', 'cmd.exe')
else:
executable_val = '/bin/sh'
else:
executable_val, argv_val, env_val = self._validate(cwd, executable, argv, env)
# Avoid the need to have to deal with the STDOUT magic value.
if stderr is STDOUT:
stderr = stdout
if IS_WINDOWS:
self.pty = None
self.raw = False
self.aslr = True
self._setuid = False
self.suid = self.uid = None
self.sgid = self.gid = None
internal_preexec_fn = None
else:
# Determine which descriptors will be attached to a new PTY
handles = (stdin, stdout, stderr)
#: Which file descriptor is the controlling TTY
self.pty = handles.index(PTY) if PTY in handles else None
#: Whether the controlling TTY is set to raw mode
self.raw = raw
#: Whether ASLR should be left on
self.aslr = aslr if aslr is not None else context.aslr
#: Whether setuid is permitted
self._setuid = setuid if setuid is None else bool(setuid)
# Create the PTY if necessary
stdin, stdout, stderr, master, slave = self._handles(*handles)
internal_preexec_fn = self.__preexec_fn
#: Arguments passed on argv
self.argv = argv_val
#: Full path to the executable
self.executable = executable_val
if ignore_environ is None:
ignore_environ = env is not None # compat
#: Environment passed on envp
self.env = {} if ignore_environ else dict(getattr(os, "environb", os.environ))
# Add environment variables as needed
self.env.update(env_val or {})
self._cwd = os.path.realpath(cwd or os.path.curdir)
#: Alarm timeout of the process
self.alarm = alarm
self.preexec_fn = preexec_fn
self.display = display or self.program
self._qemu = False
self._corefile = None
message = "Starting %s process %r" % (where, self.display)
if self.isEnabledFor(logging.DEBUG):
if argv != [self.executable]: message += ' argv=%r ' % self.argv
if original_env not in (os.environ, None): message += ' env=%r ' % self.env
with self.progress(message) as p:
if not self.aslr:
self.warn_once("ASLR is disabled!")
# In the event the binary is a foreign architecture,
# and binfmt is not installed (e.g. when running on
# Travis CI), re-try with qemu-XXX if we get an
# 'Exec format error'.
prefixes = [([], self.executable)]
exception = None
for prefix, executable in prefixes:
try:
args = self.argv
if prefix:
args = prefix + args
self.proc = subprocess.Popen(args = args,
shell = shell,
executable = executable,
cwd = cwd,
env = self.env,
stdin = stdin,
stdout = stdout,
stderr = stderr,
close_fds = close_fds,
preexec_fn = internal_preexec_fn,
creationflags = creationflags)
break
except OSError as exception:
if exception.errno != errno.ENOEXEC:
raise
prefixes.append(self.__on_enoexec(exception))
p.success('pid %i' % self.pid)
if IS_WINDOWS:
self._read_thread = None
self._read_queue = queue.Queue()
if self.proc.stdout:
# Read from stdout in a thread
self._read_thread = threading.Thread(target=_read_in_thread, args=(self._read_queue, self.proc.stdout))
self._read_thread.daemon = True
self._read_thread.start()
return
if self.pty is not None:
if stdin is slave:
self.proc.stdin = os.fdopen(os.dup(master), 'r+b', 0)
if stdout is slave:
self.proc.stdout = os.fdopen(os.dup(master), 'r+b', 0)
if stderr is slave:
self.proc.stderr = os.fdopen(os.dup(master), 'r+b', 0)
os.close(master)
os.close(slave)
# Set in non-blocking mode so that a call to call recv(1000) will
# return as soon as a the first byte is available
if self.proc.stdout:
fd = self.proc.stdout.fileno()
fl = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK)
# Save off information about whether the binary is setuid / setgid
self.suid = self.uid = os.getuid()
self.sgid = self.gid = os.getgid()
st = os.stat(self.executable)
if self._setuid:
if (st.st_mode & stat.S_ISUID):
self.suid = st.st_uid
if (st.st_mode & stat.S_ISGID):
self.sgid = st.st_gid
def __preexec_fn(self):
"""
Routine executed in the child process before invoking execve().
Handles setting the controlling TTY as well as invoking the user-
supplied preexec_fn.
"""
if self.pty is not None:
self.__pty_make_controlling_tty(self.pty)
if not self.aslr:
try:
if context.os == 'linux' and self._setuid is not True:
ADDR_NO_RANDOMIZE = 0x0040000
ctypes.CDLL('libc.so.6').personality(ADDR_NO_RANDOMIZE)
resource.setrlimit(resource.RLIMIT_STACK, (-1, -1))
except Exception:
self.exception("Could not disable ASLR")
# Assume that the user would prefer to have core dumps.
try:
resource.setrlimit(resource.RLIMIT_CORE, (-1, -1))
except Exception:
pass
# Given that we want a core file, assume that we want the whole thing.
try:
with open('/proc/self/coredump_filter', 'w') as f:
f.write('0xff')
except Exception:
pass
if self._setuid is False:
try:
PR_SET_NO_NEW_PRIVS = 38
ctypes.CDLL('libc.so.6').prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)
except Exception:
pass
# Avoid issues with attaching to processes when yama-ptrace is set
try:
PR_SET_PTRACER = 0x59616d61
PR_SET_PTRACER_ANY = -1
ctypes.CDLL('libc.so.6').prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY, 0, 0, 0)
except Exception:
pass
if self.alarm is not None:
signal.alarm(self.alarm)
self.preexec_fn()
def __on_enoexec(self, exception):
"""We received an 'exec format' error (ENOEXEC)
This implies that the user tried to execute e.g.
an ARM binary on a non-ARM system, and does not have
binfmt helpers installed for QEMU.
"""
# Get the ELF binary for the target executable
with context.quiet:
# XXX: Cyclic imports :(
from pwnlib.elf import ELF
binary = ELF(self.executable)
# If we're on macOS, this will never work. Bail now.
# if platform.mac_ver()[0]:
# self.error("Cannot run ELF binaries on macOS")
# Determine what architecture the binary is, and find the
# appropriate qemu binary to run it.
qemu_path = qemu.user_path(arch=binary.arch)
if not qemu_path:
raise exception
qemu_path = which(qemu_path)
if qemu_path:
self._qemu = qemu_path
args = [qemu_path]
if self.argv:
args += ['-0', self.argv[0]]
args += ['--']
return [args, qemu_path]
# If we get here, we couldn't run the binary directly, and
# we don't have a qemu which can run it.
self.exception(exception)
@property
def program(self):
"""Alias for ``executable``, for backward compatibility.
Example:
>>> p = process('/bin/true')
>>> p.executable == '/bin/true'
True
>>> p.executable == p.program
True
"""
return self.executable
@property
def cwd(self):
"""Directory that the process is working in.
Example:
>>> p = process('sh')
>>> p.sendline(b'cd /tmp; echo AAA')
>>> _ = p.recvuntil(b'AAA')
>>> p.cwd == '/tmp'
True
>>> p.sendline(b'cd /proc; echo BBB;')
>>> _ = p.recvuntil(b'BBB')
>>> p.cwd
'/proc'
"""
try:
from pwnlib.util.proc import cwd
self._cwd = cwd(self.pid)
except Exception:
pass
return self._cwd
def _validate(self, cwd, executable, argv, env):
"""
Perform extended validation on the executable path, argv, and envp.
Mostly to make Python happy, but also to prevent common pitfalls.
"""
orig_cwd = cwd
cwd = cwd or os.path.curdir
argv, env = normalize_argv_env(argv, env, self, 4)
if env:
if sys.platform == 'win32':
# Windows requires that all environment variables be strings
env = {_decode(k): _decode(v) for k, v in env}
else:
env = {bytes(k): bytes(v) for k, v in env}
if argv:
argv = list(map(bytes, argv))
#
# Validate executable
#
# - Must be an absolute or relative path to the target executable
# - If not, attempt to resolve the name in $PATH
#
if not executable:
if not argv:
self.error("Must specify argv or executable")
executable = argv[0]
if not isinstance(executable, str):
executable = executable.decode('utf-8')
path = env and env.get(b'PATH')
if path:
path = path.decode()
else:
path = os.environ.get('PATH')
# Do not change absolute paths to binaries
if executable.startswith(os.path.sep):
pass
# If there's no path component, it's in $PATH or relative to the
# target directory.
#
# For example, 'sh'
elif os.path.sep not in executable and which(executable, path=path):
executable = which(executable, path=path)
# Either there is a path component, or the binary is not in $PATH
# For example, 'foo/bar' or 'bar' with cwd=='foo'
elif os.path.sep not in executable:
tmp = executable
executable = os.path.join(cwd, executable)
self.warn_once("Could not find executable %r in $PATH, using %r instead" % (tmp, executable))
# There is a path component and user specified a working directory,
# it must be relative to that directory. For example, 'bar/baz' with
# cwd='foo' or './baz' with cwd='foo/bar'
elif orig_cwd:
executable = os.path.join(orig_cwd, executable)
if not os.path.exists(executable):
self.error("%r does not exist" % executable)
if not os.path.isfile(executable):
self.error("%r is not a file" % executable)
if not os.access(executable, os.X_OK):
self.error("%r is not marked as executable (+x)" % executable)
return executable, argv, env
def _handles(self, stdin, stdout, stderr):
master = slave = None
if self.pty is not None:
# Normally we could just use PIPE and be happy.
# Unfortunately, this results in undesired behavior when
# printf() and similar functions buffer data instead of
# sending it directly.
#
# By opening a PTY for STDOUT, the libc routines will not
# buffer any data on STDOUT.
master, slave = pty.openpty()
if self.raw:
# By giving the child process a controlling TTY,
# the OS will attempt to interpret terminal control codes
# like backspace and Ctrl+C.
#
# If we don't want this, we set it to raw mode.
tty.setraw(master)
tty.setraw(slave)
if stdin is PTY:
stdin = slave
if stdout is PTY:
stdout = slave
if stderr is PTY:
stderr = slave
return stdin, stdout, stderr, master, slave
def __getattr__(self, attr):
"""Permit pass-through access to the underlying process object for
fields like ``pid`` and ``stdin``.
"""
if not attr.startswith('_') and hasattr(self.proc, attr):
return getattr(self.proc, attr)
raise AttributeError("'process' object has no attribute '%s'" % attr)
def kill(self):
"""kill()
Kills the process.
"""
self.close()
def poll(self, block = False):
"""poll(block = False) -> int
Arguments:
block(bool): Wait for the process to exit
Poll the exit code of the process. Will return None, if the
process has not yet finished and the exit code otherwise.
"""
# In order to facilitate retrieving core files, force an update
# to the current working directory
_ = self.cwd
if block:
self.wait_for_close()
self.proc.poll()
returncode = self.proc.returncode
if returncode is not None and not self._stop_noticed:
self._stop_noticed = time.time()
signame = ''
if returncode < 0:
signame = ' (%s)' % (signal_names.get(returncode, 'SIG???'))
self.info("Process %r stopped with exit code %d%s (pid %i)" % (self.display,
returncode,
signame,
self.pid))
return returncode
def communicate(self, stdin = None):
"""communicate(stdin = None) -> str
Calls :meth:`subprocess.Popen.communicate` method on the process.
"""
return self.proc.communicate(stdin)
# Implementation of the methods required for tube
def recv_raw(self, numb):
# This is a slight hack. We try to notice if the process is
# dead, so we can write a message.
self.poll()
if not self.connected_raw('recv'):
raise EOFError
if not self.can_recv_raw(self.timeout):
return ''
if IS_WINDOWS:
data = b''
count = 0
while count < numb:
if self._read_queue.empty():
break
last_byte = self._read_queue.get(block=False)
data += last_byte
count += 1
return data
# This will only be reached if we either have data,
# or we have reached an EOF. In either case, it
# should be safe to read without expecting it to block.
data = ''
try:
data = self.proc.stdout.read(numb)
except IOError:
pass
if not data:
self.shutdown("recv")
raise EOFError
return data
def send_raw(self, data):
# This is a slight hack. We try to notice if the process is
# dead, so we can write a message.
self.poll()
if not self.connected_raw('send'):
raise EOFError
try:
self.proc.stdin.write(data)
self.proc.stdin.flush()
except IOError:
raise EOFError
def settimeout_raw(self, timeout):
pass
def can_recv_raw(self, timeout):
if not self.connected_raw('recv'):
return False
if IS_WINDOWS:
with self.countdown(timeout=timeout):
while self.timeout and self._read_queue.empty():
time.sleep(0.01)
return not self._read_queue.empty()
try:
if timeout is None:
return select.select([self.proc.stdout], [], []) == ([self.proc.stdout], [], [])
return select.select([self.proc.stdout], [], [], timeout) == ([self.proc.stdout], [], [])
except ValueError:
# Not sure why this isn't caught when testing self.proc.stdout.closed,
# but it's not.
#
# File "/home/user/pwntools/pwnlib/tubes/process.py", line 112, in can_recv_raw
# return select.select([self.proc.stdout], [], [], timeout) == ([self.proc.stdout], [], [])
# ValueError: I/O operation on closed file
raise EOFError
except select.error as v:
if v.args[0] == errno.EINTR:
return False
def connected_raw(self, direction):
if direction == 'any':
return self.poll() is None
elif direction == 'send':
return self.proc.stdin and not self.proc.stdin.closed
elif direction == 'recv':
return self.proc.stdout and not self.proc.stdout.closed
def close(self):
if self.proc is None:
return
# First check if we are already dead
self.poll()
if not self._stop_noticed:
try:
self.proc.kill()
self.proc.wait()
self._stop_noticed = time.time()
self.info('Stopped process %r (pid %i)' % (self.program, self.pid))
except OSError:
pass
# close file descriptors
for fd in [self.proc.stdin, self.proc.stdout, self.proc.stderr]:
if fd is not None:
try:
fd.close()
except IOError as e:
if e.errno != errno.EPIPE and e.errno != errno.EINVAL:
raise
def fileno(self):
if not self.connected():
self.error("A stopped process does not have a file number")
return self.proc.stdout.fileno()
def shutdown_raw(self, direction):
if direction == "send":
self.proc.stdin.close()
if direction == "recv":
self.proc.stdout.close()
if all(fp is None or fp.closed for fp in [self.proc.stdin, self.proc.stdout]):
self.close()
def __pty_make_controlling_tty(self, tty_fd):
'''This makes the pseudo-terminal the controlling tty. This should be
more portable than the pty.fork() function. Specifically, this should
work on Solaris. '''
child_name = os.ttyname(tty_fd)
# Disconnect from controlling tty. Harmless if not already connected.
try:
fd = os.open("/dev/tty", os.O_RDWR | os.O_NOCTTY)
if fd >= 0:
os.close(fd)
# which exception, shouldnt' we catch explicitly .. ?
except OSError:
# Already disconnected. This happens if running inside cron.
pass
os.setsid()
# Verify we are disconnected from controlling tty
# by attempting to open it again.
try:
fd = os.open("/dev/tty", os.O_RDWR | os.O_NOCTTY)
if fd >= 0:
os.close(fd)
raise Exception('Failed to disconnect from '
'controlling tty. It is still possible to open /dev/tty.')
# which exception, shouldnt' we catch explicitly .. ?
except OSError:
# Good! We are disconnected from a controlling tty.
pass
# Verify we can open child pty.
fd = os.open(child_name, os.O_RDWR)
if fd < 0:
raise Exception("Could not open child pty, " + child_name)
else:
os.close(fd)
# Verify we now have a controlling tty.
fd = os.open("/dev/tty", os.O_WRONLY)
if fd < 0:
raise Exception("Could not open controlling tty, /dev/tty")
else:
os.close(fd)
def maps(self):
"""maps() -> [mapping]
Returns a list of process mappings.
A mapping object has the following fields:
addr, address (addr alias), start (addr alias), end, size, perms, path, rss, pss, shared_clean, shared_dirty, private_clean, private_dirty, referenced, anonymous, swap
perms is a permissions object, with the following fields:
read, write, execute, private, shared, string
Example:
>>> p = process(['cat'])
>>> p.sendline(b"meow")
>>> p.recvline()
b'meow\\n'
>>> proc_maps = open("/proc/" + str(p.pid) + "/maps", "r").readlines()
>>> pwn_maps = p.maps()
>>> len(proc_maps) == len(pwn_maps)
True
>>> checker_arr = []
>>> for proc, pwn in zip(proc_maps, pwn_maps):
... proc = proc.split(' ')
... p_addrs = proc[0].split('-')
... checker_arr.append(int(p_addrs[0], 16) == pwn.addr == pwn.address == pwn.start)
... checker_arr.append(int(p_addrs[1], 16) == pwn.end)
... checker_arr.append(pwn.size == pwn.end - pwn.start)
... checker_arr.append(pwn.perms.string == proc[1])
... proc_path = proc[-1].strip()
... checker_arr.append(pwn.path == proc_path or (pwn.path == '[anon]' and proc_path == ''))
...
>>> checker_arr == [True] * len(proc_maps) * 5
True
"""
"""
Useful information about this can be found at: https://man7.org/linux/man-pages/man5/proc.5.html
specifically the /proc/pid/maps section.
memory_maps() returns a list of pmmap_ext objects
The definition (from psutil/_pslinux.py) is:
pmmap_grouped = namedtuple(
'pmmap_grouped',
['path', 'rss', 'size', 'pss', 'shared_clean', 'shared_dirty',
'private_clean', 'private_dirty', 'referenced', 'anonymous', 'swap'])
pmmap_ext = namedtuple(
'pmmap_ext', 'addr perms ' + ' '.join(pmmap_grouped._fields))
Here is an example of a pmmap_ext entry:
pmmap_ext(addr='15555551c000-155555520000', perms='r--p', path='[vvar]', rss=0, size=16384, pss=0, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=0, referenced=0, anonymous=0, swap=0)
"""
permissions = namedtuple("permissions", "read write execute private shared string")
mapping = namedtuple("mapping",
"addr address start end size perms path rss pss shared_clean shared_dirty private_clean private_dirty referenced anonymous swap")
# addr = address (alias) = start (alias)
from pwnlib.util.proc import memory_maps
raw_maps = memory_maps(self.pid)
maps = []
# raw_mapping
for r_m in raw_maps:
p_perms = permissions('r' in r_m.perms, 'w' in r_m.perms, 'x' in r_m.perms, 'p' in r_m.perms, 's' in r_m.perms, r_m.perms)
addr_split = r_m.addr.split('-')
p_addr = int(addr_split[0], 16)
p_mapping = mapping(p_addr, p_addr, p_addr, int(addr_split[1], 16), r_m.size, p_perms, r_m.path, r_m.rss,
r_m.pss, r_m.shared_clean, r_m.shared_dirty, r_m.private_clean, r_m.private_dirty,
r_m.referenced, r_m.anonymous, r_m.swap)
maps.append(p_mapping)
return maps
def get_mapping(self, path_value, single=True):
"""get_mapping(path_value, single=True) -> mapping
get_mapping(path_value, False) -> [mapping]
Arguments:
path_value(str): The exact path of the requested mapping,
valid values are also [stack], [heap], etc..
single(bool=True): Whether to only return the first
mapping matched, or all of them.
Returns found mapping(s) in process memory according to
path_value.
Example:
>>> p = process(['cat'])
>>> mapping = p.get_mapping('[stack]')
>>> mapping.path == '[stack]'
True
>>> mapping.perms.execute
False
>>>
>>> mapping = p.get_mapping('does not exist')
>>> print(mapping)
None
>>>
>>> mappings = p.get_mapping(which('cat'), single=False)
>>> len(mappings) > 1
True
"""
all_maps = self.maps()
if single:
for mapping in all_maps:
if path_value == mapping.path:
return mapping
return None