Skip to content

Latest commit

 

History

History
88 lines (67 loc) · 2.57 KB

README.md

File metadata and controls

88 lines (67 loc) · 2.57 KB

text2vec-onnx

本项目是 text2vec 项目的 onnxruntime 推理版本,实现了向量获取和文本匹配搜索。为了保证项目的轻量,只使用了 onnxruntimetokenizersnumpy 三个库。

主要在 GanymedeNil/text2vec-base-chinese-onnx 模型上进行测试,理论上支持 BERT 系列模型。

安装

CPU 版本

pip install text2vec2onnx[cpu]

GPU 版本

pip install text2vec2onnx[gpu]

使用

模型下载

以下载 GanymedeNil/text2vec-base-chinese-onnx 为例,下载模型到本地。

  • huggingface 模型下载
huggingface-cli download --resume-download GanymedeNil/text2vec-base-chinese-onnx --local-dir text2vec-base-chinese-onnx

向量获取

from text2vec2onnx import SentenceModel
embedder = SentenceModel(model_dir_path='local-dir')
emb = embedder.encode("你好")

文本匹配搜索

from text2vec2onnx import SentenceModel, semantic_search

embedder = SentenceModel(model_dir_path='local-dir')

corpus = [
    "谢谢观看 下集再见",
    "感谢您的观看",
    "请勿模仿",
    "记得订阅我们的频道哦",
    "The following are sentences in English.",
    "Thank you. Bye-bye.",
    "It's true",
    "I don't know.",
    "Thank you for watching!",
]
corpus_embeddings = embedder.encode(corpus)

queries = [
    'Thank you. Bye.',
    '你干啥呢',
    '感谢您的收听']

for query in queries:
    query_embedding = embedder.encode(query)
    hits = semantic_search(query_embedding, corpus_embeddings, top_k=1)
    print("\n\n======================\n\n")
    print("Query:", query)
    print("\nTop 5 most similar sentences in corpus:")
    hits = hits[0]  # Get the hits for the first query
    for hit in hits:
        print(corpus[hit['corpus_id']], "(Score: {:.4f})".format(hit['score']))

License

Appache License 2.0

References

Buy me a coffee

Buy Me A Coffee