-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDRIVER.py
110 lines (91 loc) · 4.9 KB
/
DRIVER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
class NormalLinear(nn.Linear):
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.normal_(0, stdv)
if self.bias is not None:
self.bias.data.normal_(0, stdv)
class DRIVER(nn.Module):
def __init__(self, num_users, num_items, embd_size):
super(DRIVER,self).__init__()
# initialize the parameters
self.embd_size = embd_size
self.num_users = num_users
self.num_items = num_items
self.user_static_embd_size = num_users
self.item_static_embd_size = num_items
self.initial_user_embd = nn.Parameter(torch.Tensor(self.embd_size))
self.initial_item_embd = nn.Parameter(torch.Tensor(self.embd_size))
self.register_parameter('initial_user_embd', self.initial_user_embd)
self.register_parameter('initial_item_embd', self.initial_item_embd)
self.initial_item_next_embd = nn.Parameter(torch.Tensor(2*self.embd_size))
self.register_parameter('initial_item_next_embd', self.initial_item_next_embd)
rnn_input_size_items = rnn_input_size_users = self.embd_size
self.item_rnn = nn.RNNCell(rnn_input_size_users, self.embd_size)
self.user_rnn = nn.RNNCell(rnn_input_size_items, self.embd_size)
self.prediction_layer = nn.Linear(self.user_static_embd_size +
self.item_static_embd_size +
self.embd_size * 3,
self.item_static_embd_size + self.embd_size)
self.embd_layer = NormalLinear(1, self.embd_size)
self.user_att = nn.Linear(2*self.embd_size, 1)
self.room_att = nn.Linear(2*self.embd_size, 1)
def forward(self, user_embd, item_embd, timediffs, select=None):
if select == 'item_update':
item_embd_output = self.item_rnn(user_embd, item_embd)
return F.normalize(item_embd_output)
elif select == 'user_update':
user_embd_output = self.user_rnn(item_embd, user_embd)
return F.normalize(user_embd_output)
elif select == 'item_next_update':
item_embd_output = user_embd + item_embd
return F.normalize(item_embd_output)
elif select == 'project':
user_projected_embd = self.context_convert(user_embd, timediffs)
return user_projected_embd
def context_convert(self, user_embd, timediffs):
new_embd = user_embd * (1+self.embd_layer(timediffs))
return new_embd
def predict_item_embd(self, user_item_embd):
X_out = self.prediction_layer(user_item_embd)
return X_out
def aggregate_function(self, user_embd, item_embd, item_cur_users,
current_item, current_user):
if type(current_item).__name__ == 'list':
aggred_item_list = []
for idx, itemid in enumerate(current_item):
userid = current_user[idx]
other_users = item_cur_users[itemid]
if len(other_users)==0:
aggred_user_embd = torch.zeros_like(user_embd[0,:]).unsqueeze(dim=0)
else:
aggred_user_embd = self.aggregate_users(user_embd[other_users,:]).unsqueeze(dim=0)
aggred_item_embd = self.combine_user_room(user_embd[userid],
item_embd[itemid,:],
aggred_user_embd)
aggred_item_list.append(aggred_item_embd)
return F.normalize(torch.cat(aggred_item_list, dim=0), dim=-1)
other_users = item_cur_users[current_item]
aggred_user_embd = self.aggregate_users(user_embd[other_users, :]).unsqueeze(dim=0)
aggred_item_embd = self.combine_user_room(user_embd[current_user],
item_embd[current_item],
aggred_user_embd)
return F.normalize(aggred_item_embd, dim=-1)
def combine_user_room(self, user, room, other_users):
user = user.clone()
room = room.clone()
other_users = other_users.clone()
user_at = nn.Sigmoid()(self.user_att(torch.cat((user.unsqueeze(dim=0),
other_users),
dim=1)))
room_at = nn.Sigmoid()(self.room_att(torch.cat((user.unsqueeze(dim=0),
room.unsqueeze(dim=0)),
dim=1)))
user_at = torch.exp(user_at)/(torch.exp(user_at)+torch.exp(room_at))
room_at = 1-user_at
return user_at * other_users + room_at * room
def aggregate_users(self, other_users):
return torch.max(other_users, dim=0)[0]