-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
101 lines (84 loc) · 4.45 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# -*- coding: utf-8 -*-
import os
import random
import argparse
import numpy as np
import torch
from data_utils import build_data, build_tokenizer, build_embedding
from models import build_model_class
from trainer import Trainer
from evaluator import Evaluator
from predictor import Predictor
def set_dir(args):
args.train_data_dir = os.path.join(args.data_dir, args.train_data_name)
args.test_data_dir = os.path.join(args.data_dir, args.test_data_name)
args.output_dir = os.path.join(args.output_dir, '{}-{}-{}'.format(args.model_name, args.train_data_name, args.suffix))
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.cache_dir, exist_ok=True)
def set_device(args):
args.num_gpus = torch.cuda.device_count()
args.device = torch.device('cuda' if args.num_gpus > 0 else 'cpu')
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def set_model(args):
args.model_class, args.input_fields = build_model_class(args.model_name)
def print_args(args):
print('>> training arguments:')
for arg in vars(args):
print('>> {}: {}'.format(arg, getattr(args, arg)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='train', type=str)
parser.add_argument('--suffix', default='none', type=str)
parser.add_argument('--model_name', default='mug', type=str)
parser.add_argument('--pretrained_model_name_or_path', default='plms/bert-base-chinese', type=str)
parser.add_argument('--train_data_name', default='lasted', type=str)
parser.add_argument('--test_data_name', default='lasted', type=str)
parser.add_argument('--data_dir', default='datasets', type=str)
parser.add_argument('--output_dir', default='outputs', type=str)
parser.add_argument('--cache_dir', default='caches', type=str)
parser.add_argument('--embed_learning_rate', default=5e-5, type=float)
parser.add_argument('--embed_weight_decay', default=0.0, type=float)
parser.add_argument('--learning_rate', default=5e-4, type=float) # 1e-3, 1e-4, 1e-5
parser.add_argument('--weight_decay', default=0.0, type=float) # 0, 1e-2
parser.add_argument('--hidden_size', default=768, type=int)
parser.add_argument('--sentiment_size', default=4, type=int)
parser.add_argument('--tag_size', default=3, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--max_length', default=150, type=int)
parser.add_argument('--num_repeats', default=1, type=int)
parser.add_argument('--num_train_epochs', default=20, type=int)
parser.add_argument('--num_patience_epochs', default=5, type=int)
parser.add_argument('--warmup_ratio', default=0.1, type=float)
parser.add_argument('--max_grad_norm', default=1.0, type=float)
parser.add_argument('--log_interval', default=50, type=int)
parser.add_argument('--seed', default=776, type=int)
parser.add_argument('--use_adapter', action='store_true')
args = parser.parse_args()
set_dir(args)
set_device(args)
set_seed(args)
set_model(args)
print_args(args)
if args.mode == 'train':
tokenizer = build_tokenizer(args.pretrained_model_name_or_path, cache_dir=args.cache_dir, use_fast=True)
embedding = build_embedding(args.pretrained_model_name_or_path, cache_dir=args.cache_dir, use_adapter=args.use_adapter)
data_dict = build_data(args.train_data_dir, tokenizer, max_length=args.max_length)
trainer = Trainer(args)
trainer.run(args, embedding, data_dict['train'], data_dict['dev'])
elif args.mode == 'evaluate':
tokenizer = build_tokenizer(args.pretrained_model_name_or_path, cache_dir=args.cache_dir, use_fast=True)
embedding = build_embedding(args.pretrained_model_name_or_path, cache_dir=args.cache_dir, use_adapter=args.use_adapter)
data_dict = build_data(args.test_data_dir, tokenizer, max_length=args.max_length)
evaluator = Evaluator(args)
evaluator.run(args, embedding, data_dict['test'])
elif args.mode == 'predict':
tokenizer = build_tokenizer(args.pretrained_model_name_or_path, cache_dir=args.cache_dir, use_fast=True)
embedding = build_embedding(args.pretrained_model_name_or_path, cache_dir=args.cache_dir, use_adapter=args.use_adapter)
predictor = Predictor(args)
predictor.run(args, embedding, tokenizer)
else:
raise ValueError('unknown mode.')