diff --git a/vignettes/statistical-specification.Rmd b/vignettes/statistical-specification.Rmd index 6801da87..7de19fe4 100644 --- a/vignettes/statistical-specification.Rmd +++ b/vignettes/statistical-specification.Rmd @@ -55,12 +55,33 @@ baseline hazard $h_0(.)$. Please note that some of these distributions do not ha the proportional-hazards property meaning that the resulting survival model corresponding to the hazard $h_i()$ will not be of the same parametric family as the baseline distribution with the hazard $h_0(.)$. + + +## Exponential Distribution + +$$ +h(t \mid \lambda) = \lambda +$$ + +Where: +- $\lambda > 0$ is the rate parameter + +## Weibull Distribution (Proportional Hazard Parameterisation) + +$$ +h(t \mid \lambda, \gamma) = \lambda \gamma t^{\gamma - 1 }; +$$ + +Where: +- $\lambda > 0$ is the rate parameter +- $\gamma > 0$ is the shape parameter +Note that with $\gamma = 1$ we obtain the exponential distribution as a special case. ## Log-Logistic Distribution $$ -h(x \mid a, b) = \frac -{(b/a)(x/a)^{(b-1)}} -{1 + (x/a)^b} +h(t \mid a, b) = \frac +{(b/a)(t/a)^{(b-1)}} +{1 + (t/a)^b} $$ Where: @@ -69,6 +90,8 @@ Where: - $b > 0$ is the shape parameter + + # Longitudinal Model Specification ## Random-Slope Model