-
Notifications
You must be signed in to change notification settings - Fork 1
/
cityscapes.py
128 lines (108 loc) · 3.99 KB
/
cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import os.path as osp
import os
from PIL import Image
import numpy as np
import json
from transform import *
class CityScapes(Dataset):
def __init__(self, cfg, mode='train', *args, **kwargs):
super(CityScapes, self).__init__(*args, **kwargs)
assert mode in ('train', 'val', 'test', 'train_val')
self.mode = mode
self.cfg = cfg
with open('./cityscapes_info.json', 'r') as fr:
labels_info = json.load(fr)
self.lb_map = {el['id']: el['trainId'] for el in labels_info}
## parse img directory
self.imgs = {}
imgnames = []
impth = osp.join(cfg.datapth, 'leftImg8bit', mode)
folders = os.listdir(impth)
for fd in folders:
fdpth = osp.join(impth, fd)
im_names = os.listdir(fdpth)
names = [el.replace('_leftImg8bit.png', '') for el in im_names]
impths = [osp.join(fdpth, el) for el in im_names]
imgnames.extend(names)
self.imgs.update(dict(zip(names, impths)))
## parse gt directory
self.labels = {}
gtnames = []
gtpth = osp.join(cfg.datapth, 'gtFine', mode)
folders = os.listdir(gtpth)
for fd in folders:
fdpth = osp.join(gtpth, fd)
lbnames = os.listdir(fdpth)
lbnames = [el for el in lbnames if 'labelIds' in el]
names = [el.replace('_gtFine_labelIds.png', '') for el in lbnames]
lbpths = [osp.join(fdpth, el) for el in lbnames]
gtnames.extend(names)
self.labels.update(dict(zip(names, lbpths)))
self.imnames = imgnames
self.len = len(self.imnames)
assert set(imgnames) == set(gtnames)
assert set(self.imnames) == set(self.imgs.keys())
assert set(self.imnames) == set(self.labels.keys())
## pre-processing
self.to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(cfg.mean, cfg.std),
])
self.trans = Compose([
ColorJitter(
brightness = cfg.brightness,
contrast = cfg.contrast,
saturation = cfg.saturation),
HorizontalFlip(),
RandomScale(cfg.scales),
RandomCrop(cfg.crop_size)
])
def __getitem__(self, idx):
if self.mode in ['train', 'val', 'train_val']:
fn = self.imnames[idx]
impth = self.imgs[fn]
lbpth = self.labels[fn]
img = Image.open(impth)
label = Image.open(lbpth)
if self.mode in ['train', 'val', 'train_val']:
im_lb = dict(im = img, lb = label)
im_lb = self.trans(im_lb)
img, label = im_lb['im'], im_lb['lb']
imgs = self.to_tensor(img)
label = np.array(label).astype(np.int64)[np.newaxis, :]
label = self.convert_labels(label)
if self.mode == 'train':
return imgs, label
if self.mode == 'val':
return imgs, label, osp.basename(impth)
else:
fn = self.imnames[idx]
impth = self.imgs[fn]
img = Image.open(impth)
imgs = self.to_tensor(img)
return imgs, osp.basename(impth)
def __len__(self):
return self.len
def convert_labels(self, label):
for k, v in self.lb_map.items():
label[label == k] = v
return label
if __name__ == "__main__":
from tqdm import tqdm
from torch.utils.data import DataLoader
ds = CityScapes('./data/', mode='val')
dl = DataLoader(ds,
batch_size = 4,
shuffle = True,
num_workers = 4,
drop_last = True)
for imgs, label in dl:
print(len(imgs))
for el in imgs:
print(el.size())
break