diff --git a/examples/00_misc/06_fourier.py b/examples/00_misc/06_fourier.py index cf08148ac..4efad00ff 100644 --- a/examples/00_misc/06_fourier.py +++ b/examples/00_misc/06_fourier.py @@ -32,7 +32,7 @@ ) # Now, we can finally calculate the field with the given parameters. -srf((x, y), mesh_type='structured') +srf((x, y), mesh_type="structured") # GSTools has a few simple visualization methods built in. srf.plot() diff --git a/examples/00_misc/07_fourier_trans.py b/examples/00_misc/07_fourier_trans.py index aea0cb43d..a69abfcc0 100644 --- a/examples/00_misc/07_fourier_trans.py +++ b/examples/00_misc/07_fourier_trans.py @@ -27,7 +27,7 @@ seed=1681903, ) # and computing it -srf((x, y), mesh_type='structured') +srf((x, y), mesh_type="structured") # With the field generated, we can now apply transformations # starting with a discretization of the field into 4 different values @@ -37,5 +37,7 @@ # This is already a nice result, but we want to pronounce the peaks of the # field. We can do this by applying a log-normal transformation on top -srf.transform("lognormal", field="transform_discrete", store="transform_lognormal") +srf.transform( + "lognormal", field="transform_discrete", store="transform_lognormal" +) srf.plot("transform_lognormal")