-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_stats.r
245 lines (178 loc) · 7 KB
/
01_stats.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
library(tidyverse)
# load the dataset
eg <- read_tsv("data/netscity_espacegeo/netscity_espacegeo.tsv")
################################################################################
# Number of publications
eg %>%
distinct(id) %>%
nrow()
# subset of publications: France
fr <- eg %>%
filter(country %in% c("FRANCE")) %>%
distinct(id) %>%
pull(id)
# subset of publications: Paris
paris <- eg %>%
filter(agglo %in% c("PARIS")) %>%
distinct(id) %>%
pull(id)
# Table 1
tab1 <- eg %>%
group_by(id) %>%
mutate(nb_countries = n_distinct(country)) %>%
mutate(nb_agglo = n_distinct(agglo)) %>%
mutate(international = ifelse(nb_countries < 2, 0, 1)) %>%
mutate(interurban = ifelse(nb_agglo < 2, 0, 1)) %>%
mutate(fr = ifelse(id %in% fr, 1, 0)) %>%
mutate(paris = ifelse(id %in% paris, 1, 0)) %>%
ungroup() %>%
distinct(id, year, international, nb_countries, interurban, nb_agglo, fr, paris) %>%
mutate(dec = case_when(year < 1978 ~ "1972-1977",
year < 1983 & year >= 1978 ~ "1978-1983",
year < 1990 & year >= 1983 ~ "1984-1989",
year < 1997 & year >= 1990 ~ "1990-1996",
year < 2003 & year >= 1997 ~ "1997-2002",
year < 2011 & year >= 2003 ~ "2003-2010",
TRUE ~ "2011-2020")) %>%
group_by(dec) %>%
summarise(n = n(), ni = sum(international), nu = sum(interurban), meanc = mean(nb_countries), meana = mean(nb_agglo),
nfr = sum(fr), nparis = sum(paris)) %>%
mutate(nsolo = n-ni, pi = ni/n*100, pfr = nfr/n*100, pparis = nparis/n*100)
# Tableau 1. Progression des collaborations interurbaines et internationales.
# Part des articles de l’Espace Géographique signés depuis la France et depuis l’agglomération parisienne.
tab1 %>%
select(Période = dec, "Nb art" = n, # Nb. d'articles
"Nb pays/art" = meanc, # Nb. moyen de pays par article
"Nb agglo/art" = meana, # Nb. moyen d’agglo. par article
"% international" = pi, # Part de co-publications internationales
"% France" = pfr, # Part d’articles signés depuis au moins une adresse en France
"% Paris" = pparis) # Part d’articles signés depuis une adresse francilienne
# Figure 1
# Title of the figure:
# L’Espace Géographique, origine géographique des articles entre 1972 et 2020 par pays.
source("functions/scaletime.r")
svg(paste("plots/Figure_1.svg"), width = 12, height = 10)
scaletime(d = eg, id = id, year = year, unit = country, group = continent,
method = "complete", # unweighted
min = 1972, max = 2020, k = 55, graph = TRUE, colour_axis = TRUE,
size_label = "N. de publications\nIn l'Espace Géo.",
x_title = "Année",
title = "L'Espace géographique, origine des articles par pays d'après l'affiliation des auteurs.",
ego_level = country, caption = TRUE, source = "Scopus, Persée et Cairn (articles et positions de recherche). Comptage non fractionné.",
author = "\nMarion Maisonobe, 2024. Récupération des affiliations sur Persée et Cairn : Max Beligné")
dev.off()
# Figure 4
# Title of the figure:
# L’Espace Géographique, origine géographique des articles entre 1972 et 2020 par agglomération.
svg(paste("plots/Figure_4.svg"), width = 10, height = 9)
scaletime(d = eg, id = id, year = year, unit = agglo, method = "complete", ego_level = agglo,
min = 1972, max = 2020, k = 47, graph = TRUE, group = continent,
size_label = "N. de publications\nIn l'Espace Géo.",
x_title = "Année",
title = "L'Espace géographique, origine des articles par aire urbaine d'après l'affiliation des auteurs",
caption = TRUE, source = "Scopus, Persée et Cairn (articles et positions de recherche).",
author = "\nMarion Maisonobe, 2024. . Récupération des affiliations sur Persée et Cairn : Max Beligné")
dev.off()
###################################################################################
# Number of countries
eg %>%
distinct(country)
# Number of countries per continent
eg %>%
distinct(country, continent) %>%
count(continent)
# Number of countries per world region
eg %>%
distinct(country, world_bank_reg) %>%
count(world_bank_reg)
# subset of publications: France
eg %>%
filter(id %in% fr) %>%
distinct(id) %>%
nrow()
# share of publications from France
length(fr)/nrow(distinct(eg, id))
# Number of publications per country (in/outside the editorial board)
eg %>%
group_by(country) %>%
summarise(n = n_distinct(id)) %>%
filter(country %in% c("SENEGAL", "ALGERIA", "ARGENTINA", "BENIN",
"BURKINA-FASO", "IVORY-COAST", "NEW-ZEALAND",
"HUNGARY", "MADAGASCAR", "VANUATU", "SWEDEN",
"MEXICO", "IRELAND", "NORWAY", "BULGARIA"))
# Number of publications per francophone country
eg %>%
group_by(country) %>%
summarise(n = n_distinct(id)) %>%
filter(country %in% c("BELGIUM", "CANADA", "SWITZERLAND"))
(71+55+45)/
nrow(distinct(eg %>% filter(!country %in% "FRANCE"), id))
# Number of publications per top country
eg %>%
group_by(country) %>%
summarise(n = n_distinct(id)) %>%
arrange(-n)
(25+23+19+17+13+9)/
nrow(distinct(eg %>% filter(!country %in% "FRANCE"), id))
# subset of publications: Paris
eg %>%
filter(id %in% paris) %>%
distinct(id) %>%
nrow()
# Number of agglomeration
eg %>%
distinct(idcomposite)
# Number of french agglomeration
eg %>%
filter(country %in% "FRANCE") %>%
distinct(idcomposite)
# Number of publications per agglomeration
eg %>%
group_by(idcomposite) %>%
summarise(n = n_distinct(id), agglo = first(agglo)) %>%
arrange(-n)
# Share of co-publications (more than 2 agglomerations)
eg %>%
group_by(id) %>%
mutate(collab = n_distinct(idcomposite)) %>%
ungroup() %>%
filter(collab >= 2) %>%
nrow() /(eg %>%
distinct(id) %>%
nrow()) *100
# Share of co-publications from at least 3 agglomerations
eg %>%
group_by(id) %>%
mutate(collab = n_distinct(idcomposite)) %>%
ungroup() %>%
filter(collab >= 3) %>%
nrow() /(eg %>%
distinct(id) %>%
nrow()) *100
# Top agglomerations
top50 <- eg %>%
group_by(agglo, idcomposite) %>%
summarise(n = n_distinct(id), fy = min(year), fymax = max(year)) %>%
mutate(etendu = fymax - fy) %>%
arrange(-n) %>%
ungroup() %>%
slice_max(n, n = 48, with_ties = T)
top50 %>%
filter(fy <= 1982) # 1992
# Share of publications (Top 50)
top50 %>%
summarise(sn = sum(n))/(eg %>%
distinct(id) %>%
nrow())*100
# Share of publications (Top 15)
top15 <- eg %>%
group_by(agglo, idcomposite) %>%
summarise(n = n_distinct(id)) %>%
arrange(-n) %>%
ungroup() %>%
slice_max(n, n = 15, with_ties = T)
top15 %>%
summarise(sn = sum(n))/(eg %>%
distinct(id) %>%
nrow())*100
##########################################################################################