-
Notifications
You must be signed in to change notification settings - Fork 16
/
polynomials_generic.py
237 lines (201 loc) · 6.88 KB
/
polynomials_generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import random
class PolynomialRing:
"""
Initialise the polynomial ring:
R = GF(q) / (X^n + 1)
"""
def __init__(self, q, n):
self.q = q
self.n = n
self.element = Polynomial
def gen(self):
"""
Return the generator `x` of the polynomial ring
"""
return self([0, 1])
def random_element(self):
"""
Compute a random element of the polynomial ring with coefficients in the
canonical range: ``[0, q-1]``
"""
coefficients = [random.randint(0, self.q - 1) for _ in range(self.n)]
return self(coefficients)
def __call__(self, coefficients):
if isinstance(coefficients, int):
return self.element(self, [coefficients])
if not isinstance(coefficients, list):
raise TypeError(
f"Polynomials should be constructed from a list of integers, of length at most d = {self.n}"
)
return self.element(self, coefficients)
def __repr__(self):
return f"Univariate Polynomial Ring in x over Finite Field of size {self.q} with modulus x^{self.n} + 1"
class Polynomial:
def __init__(self, parent, coefficients):
self.parent = parent
self.coeffs = self._parse_coefficients(coefficients)
def is_zero(self):
"""
Return if polynomial is zero: f = 0
"""
return all(c == 0 for c in self.coeffs)
def is_constant(self):
"""
Return if polynomial is constant: f = c
"""
return all(c == 0 for c in self.coeffs[1:])
def _parse_coefficients(self, coefficients):
"""
Helper function which right pads with zeros
to allow polynomial construction as
f = R([1,1,1])
"""
l = len(coefficients)
if l > self.parent.n:
raise ValueError(
f"Coefficients describe polynomial of degree greater than maximum degree {self.parent.n}"
)
elif l < self.parent.n:
coefficients = coefficients + [0 for _ in range(self.parent.n - l)]
return coefficients
def reduce_coefficients(self):
"""
Reduce all coefficients modulo q
"""
self.coeffs = [c % self.parent.q for c in self.coeffs]
return self
def _add_mod_q(self, x, y):
"""
add two coefficients modulo q
"""
return (x + y) % self.parent.q
def _sub_mod_q(self, x, y):
"""
sub two coefficients modulo q
"""
return (x - y) % self.parent.q
def _schoolbook_multiplication(self, other):
"""
Naive implementation of polynomial multiplication
suitible for all R_q = F_1[X]/(X^n + 1)
"""
n = self.parent.n
a = self.coeffs
b = other.coeffs
new_coeffs = [0 for _ in range(n)]
for i in range(n):
for j in range(0, n - i):
new_coeffs[i + j] += a[i] * b[j]
for j in range(1, n):
for i in range(n - j, n):
new_coeffs[i + j - n] -= a[i] * b[j]
return [c % self.parent.q for c in new_coeffs]
def __neg__(self):
"""
Returns -f, by negating all coefficients
"""
neg_coeffs = [(-x % self.parent.q) for x in self.coeffs]
return self.parent(neg_coeffs)
def _add_(self, other):
if isinstance(other, type(self)):
new_coeffs = [
self._add_mod_q(x, y) for x, y in zip(self.coeffs, other.coeffs)
]
elif isinstance(other, int):
new_coeffs = self.coeffs.copy()
new_coeffs[0] = self._add_mod_q(new_coeffs[0], other)
else:
raise NotImplementedError("Polynomials can only be added to each other")
return new_coeffs
def __add__(self, other):
new_coeffs = self._add_(other)
return self.parent(new_coeffs)
def __radd__(self, other):
return self.__add__(other)
def __iadd__(self, other):
self = self + other
return self
def _sub_(self, other):
if isinstance(other, type(self)):
new_coeffs = [
self._sub_mod_q(x, y) for x, y in zip(self.coeffs, other.coeffs)
]
elif isinstance(other, int):
new_coeffs = self.coeffs.copy()
new_coeffs[0] = self._sub_mod_q(new_coeffs[0], other)
else:
raise NotImplementedError(
"Polynomials can only be subtracted from each other"
)
return new_coeffs
def __sub__(self, other):
new_coeffs = self._sub_(other)
return self.parent(new_coeffs)
def __rsub__(self, other):
return -self.__sub__(other)
def __isub__(self, other):
self = self - other
return self
def __mul__(self, other):
if isinstance(other, type(self)):
new_coeffs = self._schoolbook_multiplication(other)
elif isinstance(other, int):
new_coeffs = [(c * other) % self.parent.q for c in self.coeffs]
else:
raise NotImplementedError(
"Polynomials can only be multiplied by each other, or scaled by integers"
)
return self.parent(new_coeffs)
def __rmul__(self, other):
return self.__mul__(other)
def __imul__(self, other):
self = self * other
return self
def __pow__(self, n):
if not isinstance(n, int):
raise TypeError(
"Exponentiation of a polynomial must be done using an integer."
)
# Deal with negative scalar multiplication
if n < 0:
raise ValueError(
"Negative powers are not supported for elements of a Polynomial Ring"
)
f = self
g = self.parent(1)
while n > 0:
if n % 2 == 1:
g = g * f
f = f * f
n = n // 2
return g
def __eq__(self, other):
if isinstance(other, type(self)):
return self.coeffs == other.coeffs
elif isinstance(other, int):
if self.is_constant() and (other % self.parent.q) == self.coeffs[0]:
return True
return False
def __getitem__(self, idx):
return self.coeffs[idx]
def __repr__(self):
if self.is_zero():
return "0"
info = []
for i, c in enumerate(self.coeffs):
if c != 0:
if i == 0:
info.append(f"{c}")
elif i == 1:
if c == 1:
info.append("x")
else:
info.append(f"{c}*x")
else:
if c == 1:
info.append(f"x^{i}")
else:
info.append(f"{c}*x^{i}")
return " + ".join(info)
def __str__(self):
return self.__repr__()