forked from marcel-licence/esp32_basic_synth
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheasySynth.ino
856 lines (737 loc) · 21.6 KB
/
easySynth.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/*
* Implementation of a simple polyphonic synthesizer module
* - it supports different waveforms
* - it supports polyphony
* - implemented ADSR for velocity and filter
* - allows usage of multiple oscillators per voice
*
* Author: Marcel Licence
*/
/*
* activate the following macro to enable unison mode
* by default the saw wave form will be used
* the waveform controllers are remapped to
* - waveform1 -> detune
* - waveform2 -> oscillator count
*/
//#define USE_UNISON
/*
* Param indices for Synth_SetParam function
*/
#define SYNTH_PARAM_VEL_ENV_ATTACK 0
#define SYNTH_PARAM_VEL_ENV_DECAY 1
#define SYNTH_PARAM_VEL_ENV_SUSTAIN 2
#define SYNTH_PARAM_VEL_ENV_RELEASE 3
#define SYNTH_PARAM_FIL_ENV_ATTACK 4
#define SYNTH_PARAM_FIL_ENV_DECAY 5
#define SYNTH_PARAM_FIL_ENV_SUSTAIN 6
#define SYNTH_PARAM_FIL_ENV_RELEASE 7
#ifdef USE_UNISON
#define SYNTH_PARAM_DETUNE_1 8
#define SYNTH_PARAM_UNISON_2 9
#else
#define SYNTH_PARAM_WAVEFORM_1 8
#define SYNTH_PARAM_WAVEFORM_2 9
#endif
#define SYNTH_PARAM_MAIN_FILT_CUTOFF 10
#define SYNTH_PARAM_MAIN_FILT_RESO 11
#define SYNTH_PARAM_VOICE_FILT_RESO 12
#define SYNTH_PARAM_VOICE_NOISE_LEVEL 13
/*
* Following defines can be changed for different puprposes
*/
#ifdef USE_UNISON
/* use another setting, because unison supports more than 2 osc per voice */
#define MAX_DETUNE 12 /* 1 + 11 additional tones */
#define MAX_POLY_OSC 36 /* osc polyphony, always active reduces single voices max poly */
#define MAX_POLY_VOICE 3 /* max single voices, can use multiple osc */
#else
#define MAX_POLY_OSC 22 /* osc polyphony, always active reduces single voices max poly */
#define MAX_POLY_VOICE 11 /* max single voices, can use multiple osc */
#endif
/*
* this is just a kind of magic to go through the waveforms
* - WAVEFORM_BIT sets the bit length of the pre calculated waveforms
*/
#define WAVEFORM_BIT 10UL
#define WAVEFORM_CNT (1<<WAVEFORM_BIT)
#define WAVEFORM_Q4 (1<<(WAVEFORM_BIT-2))
#define WAVEFORM_MSK ((1<<WAVEFORM_BIT)-1)
#define WAVEFORM_I(i) ((i) >> (32 - WAVEFORM_BIT)) & WAVEFORM_MSK
#define MIDI_NOTE_CNT 128
uint32_t midi_note_to_add[MIDI_NOTE_CNT]; /* lookup to playback waveforms with correct frequency */
#ifdef USE_UNISON
uint32_t midi_note_to_add50c[MIDI_NOTE_CNT]; /* lookup for detuning */
#endif
/*
* set the correct count of available waveforms
*/
#define WAVEFORM_TYPE_COUNT 7
/*
* add here your waveforms
*/
float *sine = NULL;
float *saw = NULL;
float *square = NULL;
float *pulse = NULL;
float *tri = NULL;
float *crappy_noise = NULL;
float *silence = NULL;
/*
* do not forget to enter the waveform pointer addresses here
*/
float *waveFormLookUp[WAVEFORM_TYPE_COUNT];
/*
* pre selected waveforms
*/
#ifdef USE_UNISON
static float detune = 0.1; /* detune parameter */
static uint8_t unison = 0; /* additional osc per voice count */
float *selectedWaveForm;
float *selectedWaveForm2;
#else
float *selectedWaveForm;
float *selectedWaveForm2;
#endif
struct adsrT
{
float a;
float d;
float s;
float r;
};
struct adsrT adsr_vol = {0.25f, 0.25f, 1.0f, 0.01f};
struct adsrT adsr_fil = {1.0f, 0.25f, 1.0f, 0.01f};
typedef enum
{
attack, decay, sustain, release
} adsr_phaseT;
/* this prototype is required .. others not - i still do not know what magic arduino is doing */
inline bool ADSR_Process(const struct adsrT *ctrl, float *ctrlSig, adsr_phaseT *phase);
struct filterCoeffT
{
float aNorm[2] = {0.0f, 0.0f};
float bNorm[3] = {1.0f, 0.0f, 0.0f};
};
struct filterProcT
{
struct filterCoeffT *filterCoeff;
float w[3];
};
struct filterCoeffT filterGlobalC;
struct filterProcT mainFilterL, mainFilterR;
float modulationDepth = 0.0f;
float modulationSpeed = 5.0f;
float modulationPitch = 1.0f;
float pitchBendValue = 0.0f;
float pitchMultiplier = 1.0f;
struct oscillatorT
{
float **waveForm;
float *dest;
uint32_t samplePos;
uint32_t addVal;
float pan_l;
float pan_r;
};
float voiceSink[2];
struct oscillatorT oscPlayer[MAX_POLY_OSC];
uint32_t osc_act = 0;
struct notePlayerT
{
float lastSample[2];
float velocity;
bool active;
adsr_phaseT phase;
uint8_t midiNote;
float control_sign;
float out_level;
struct filterCoeffT filterC;
struct filterProcT filterL;
struct filterProcT filterR;
float f_control_sign;
float f_control_sign_slow;
adsr_phaseT f_phase;
};
struct notePlayerT voicePlayer[MAX_POLY_VOICE];
uint32_t voc_act = 0;
void Synth_Init()
{
randomSeed(34547379);
/*
* we do not check if malloc was successful
* if there is not enough memory left the application will crash
*/
sine = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
saw = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
square = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
pulse = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
tri = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
crappy_noise = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
silence = (float *)malloc(sizeof(float) * WAVEFORM_CNT);
/*
* let us calculate some waveforms
* - using lookup tables can save a lot of processing power later
* - but it does consume memory
*/
for (int i = 0; i < WAVEFORM_CNT; i++)
{
float val = (float)sin(i * 2.0 * PI / WAVEFORM_CNT);
sine[i] = val;
saw[i] = (2.0f * ((float)i) / ((float)WAVEFORM_CNT)) - 1.0f;
square[i] = (i > (WAVEFORM_CNT / 2)) ? 1 : -1;
pulse[i] = (i > (WAVEFORM_CNT / 4)) ? 1 : -1;
tri[i] = ((i > (WAVEFORM_CNT / 2)) ? (((4.0f * (float)i) / ((float)WAVEFORM_CNT)) - 1.0f) : (3.0f - ((4.0f * (float)i) / ((float)WAVEFORM_CNT)))) - 2.0f;
crappy_noise[i] = (random(1024) / 512.0f) - 1.0f;
silence[i] = 0;
}
waveFormLookUp[0] = sine;
waveFormLookUp[1] = saw;
waveFormLookUp[2] = square;
waveFormLookUp[3] = pulse;
waveFormLookUp[4] = tri;
waveFormLookUp[5] = crappy_noise;
waveFormLookUp[6] = silence;
#ifdef USE_UNISON
selectedWaveForm = saw;
selectedWaveForm2 = saw;
#else
selectedWaveForm = pulse;
selectedWaveForm2 = silence;
#endif
/*
* initialize all oscillators
*/
for (int i = 0; i < MAX_POLY_OSC; i++)
{
oscillatorT *osc = &oscPlayer[i];
osc->waveForm = &silence;
osc->dest = voiceSink;
}
/*
* initialize all voices
*/
for (int i = 0; i < MAX_POLY_VOICE; i++)
{
notePlayerT *voice = &voicePlayer[i];
voice->active = false;
voice->lastSample[0] = 0.0f;
voice->lastSample[1] = 0.0f;
voice->filterL.filterCoeff = &voice->filterC;
voice->filterR.filterCoeff = &voice->filterC;
}
/*
* prepare lookup for constants to drive oscillators
*/
for (int i = 0; i < MIDI_NOTE_CNT; i++)
{
float f = ((pow(2.0f, (float)(i - 69) / 12.0f) * 440.0f));
uint32_t add = (uint32_t)(f * ((float)(1ULL << 32ULL) / ((float)SAMPLE_RATE)));
midi_note_to_add[i] = add;
#ifdef USE_UNISON
/* filling the table which will be used for detuning */
float f1 = (pow(2.0f, ((float)(i - 69) + 0.5f) / 12.0f) * 440.0f);
float f2 = (pow(2.0f, ((float)(i - 69) - 0.5f) / 12.0f) * 440.0f);
midi_note_to_add50c[i] = (uint32_t)((f1 - f2) * ((float)(1ULL << 32ULL) / ((float)SAMPLE_RATE)));
#endif
}
/*
* assign main filter
*/
mainFilterL.filterCoeff = &filterGlobalC;
mainFilterR.filterCoeff = &filterGlobalC;
}
struct filterCoeffT mainFilt;
/*
* filter calculator:
* https://www.earlevel.com/main/2013/10/13/biquad-calculator-v2/
*
* some filter implementations:
* https://github.com/ddiakopoulos/MoogLadders/blob/master/src/Filters.h
*
* some more information about biquads:
* https://www.earlevel.com/main/2003/02/28/biquads/
*/
static float filtCutoff = 1.0f;
static float filtReso = 0.5f;
static float soundFiltReso = 0.5f;
static float soundNoiseLevel = 0.0f;
/*
* calculate coefficients of the 2nd order IIR filter
*/
inline void Filter_Calculate(float c, float reso, struct filterCoeffT *const filterC)
{
float *aNorm = filterC->aNorm;
float *bNorm = filterC->bNorm;
float Q = reso;
float cosOmega, omega, sinOmega, alpha, a[3], b[3];
/*
* change curve of cutoff a bit
* maybe also log or exp function could be used
*/
c = c * c * c;
if (c >= 1.0f)
{
omega = 1.0f;
}
else if (c < 0.0025f)
{
omega = 0.0025f;
}
else
{
omega = c;
}
/*
* use lookup here to get quicker results
*/
cosOmega = sine[WAVEFORM_I((uint32_t)((float)((1ULL << 31) - 1) * omega + (float)((1ULL << 30) - 1)))];
sinOmega = sine[WAVEFORM_I((uint32_t)((float)((1ULL << 31) - 1) * omega))];
alpha = sinOmega / (2.0 * Q);
b[0] = (1 - cosOmega) / 2;
b[1] = 1 - cosOmega;
b[2] = b[0];
a[0] = 1 + alpha;
a[1] = -2 * cosOmega;
a[2] = 1 - alpha;
// Normalize filter coefficients
float factor = 1.0f / a[0];
aNorm[0] = a[1] * factor;
aNorm[1] = a[2] * factor;
bNorm[0] = b[0] * factor;
bNorm[1] = b[1] * factor;
bNorm[2] = b[2] * factor;
}
inline void Filter_Process(float *const signal, struct filterProcT *const filterP)
{
const float out = filterP->filterCoeff->bNorm[0] * (*signal) + filterP->w[0];
filterP->w[0] = filterP->filterCoeff->bNorm[1] * (*signal) - filterP->filterCoeff->aNorm[0] * out + filterP->w[1];
filterP->w[1] = filterP->filterCoeff->bNorm[2] * (*signal) - filterP->filterCoeff->aNorm[1] * out;
*signal = out;
}
/*
* very bad and simple implementation of ADSR
* - but it works for the start
*/
inline bool ADSR_Process(const struct adsrT *ctrl, float *ctrlSig, adsr_phaseT *phase)
{
switch (*phase)
{
case attack:
*ctrlSig += ctrl->a;
if (*ctrlSig > 1.0f)
{
*ctrlSig = 1.0f;
*phase = decay;
}
break;
case decay:
*ctrlSig -= ctrl->d;
if (*ctrlSig < ctrl->s)
{
*ctrlSig = ctrl->s;
*phase = sustain;
}
break;
case sustain:
break;
case release:
*ctrlSig -= ctrl->r;
if (*ctrlSig < 0.0f)
{
*ctrlSig = 0.0f;
//voice->active = false;
return false;
}
}
return true;
}
void Voice_Off(uint32_t i)
{
notePlayerT *voice = &voicePlayer[i];
for (int f = 0; f < MAX_POLY_OSC; f++)
{
oscillatorT *osc = &oscPlayer[f];
if (osc->dest == voice->lastSample)
{
osc->dest = voiceSink;
osc_act -= 1;
}
}
voc_act -= 1;
}
inline
float SineNorm(float alpha_div2pi)
{
uint32_t index = ((uint32_t)(alpha_div2pi * ((float)WAVEFORM_CNT))) % WAVEFORM_CNT;
return sine[index];
}
inline
float GetModulation(void)
{
float modSpeed = modulationSpeed;
return modulationDepth * modulationPitch * (SineNorm((modSpeed * ((float)millis()) / 1000.0f )));
}
static float out_l, out_r;
static uint32_t count = 0;
//[[gnu::noinline, gnu::optimize ("fast-math")]]
inline void Synth_Process(float *left, float *right)
{
/* gerenate a noise signal */
float noise_signal = ((random(1024) / 512.0f) - 1.0f) * soundNoiseLevel;
/*
* generator simulation, rotate all wheels
*/
out_l = 0;
out_r = 0;
/* counter required to optimize processing */
count += 1;
/*
* destination for unused oscillators
*/
voiceSink[0] = 0;
voiceSink[1] = 0;
/*
* update pitch bending / modulation
*/
if (count % 64 == 0)
{
float pitchVar = pitchBendValue + GetModulation();
static float lastPitchVar = 0;
pitchMultiplier = pow(2.0f, pitchVar / 12.0f);
}
/*
* oscillator processing -> mix to voice
*/
for (int i = 0; i < MAX_POLY_OSC; i++)
{
oscillatorT *osc = &oscPlayer[i];
{
osc->samplePos += (uint32_t)( pitchMultiplier * ((float)osc->addVal));
float sig = (*osc->waveForm)[WAVEFORM_I(osc->samplePos)];
osc->dest[0] += osc->pan_l * sig;
osc->dest[1] += osc->pan_r * sig;
}
}
/*
* voice processing
*/
for (int i = 0; i < MAX_POLY_VOICE; i++) /* one loop is faster than two loops */
{
notePlayerT *voice = &voicePlayer[i];
if (voice->active)
{
if (count % 4 == 0)
{
voice->active = ADSR_Process(&adsr_vol, &voice->control_sign, &voice->phase);
if (voice->active == false)
{
Voice_Off(i);
}
/*
* make is slow to avoid bad things .. or crying ears
*/
(void)ADSR_Process(&adsr_fil, &voice->f_control_sign, &voice->f_phase);
}
/* add some noise to the voice */
voice->lastSample[0] += noise_signal;
voice->lastSample[1] += noise_signal;
voice->lastSample[0] *= voice->control_sign * voice->velocity;
voice->lastSample[1] *= voice->control_sign * voice->velocity;
if (count % 32 == 0)
{
voice->f_control_sign_slow = 0.05 * voice->f_control_sign + 0.95 * voice->f_control_sign_slow;
Filter_Calculate(voice->f_control_sign_slow, soundFiltReso, &voice->filterC);
}
Filter_Process(&voice->lastSample[0], &voice->filterL);
Filter_Process(&voice->lastSample[1], &voice->filterR);
out_l += voice->lastSample[0];
out_r += voice->lastSample[1];
voice->lastSample[0] = 0.0f;
voice->lastSample[1] = 0.0f;
}
}
/*
* process main filter
*/
Filter_Process(&out_l, &mainFilterL);
Filter_Process(&out_r, &mainFilterR);
/*
* reduce level a bit to avoid distortion
*/
out_l *= 0.4f * 0.25f;
out_r *= 0.4f * 0.25f;
/*
* finally output our samples
*/
*left = out_l;
*right = out_r;
}
struct oscillatorT *getFreeOsc()
{
for (int i = 0; i < MAX_POLY_OSC ; i++)
{
if (oscPlayer[i].dest == voiceSink)
{
return &oscPlayer[i];
}
}
return NULL;
}
struct notePlayerT *getFreeVoice()
{
for (int i = 0; i < MAX_POLY_VOICE ; i++)
{
if (voicePlayer[i].active == false)
{
return &voicePlayer[i];
}
}
return NULL;
}
inline void Filter_Reset(struct filterProcT *filter)
{
filter->w[0] = 0.0f;
filter->w[1] = 0.0f;
filter->w[2] = 0.0f;
}
inline void Synth_NoteOn(uint8_t ch, uint8_t note, float vel)
{
struct notePlayerT *voice = getFreeVoice();
struct oscillatorT *osc = getFreeOsc();
/*
* No free voice found, return otherwise crash xD
*/
if ((voice == NULL) || (osc == NULL))
{
//Serial.printf("voc: %d, osc: %d\n", voc_act, osc_act);
return ;
}
voice->midiNote = note;
#ifdef MIDI_USE_CONST_VELOCITY
voice->velocity = 1.0f;
#else
voice->velocity = vel;
#endif
voice->lastSample[0] = 0.0f;
voice->lastSample[1] = 0.0f;
voice->control_sign = 0.0f;
#if 0
voice->f_phase = attack;
#else
if (adsr_fil.a < adsr_fil.s)
{
adsr_fil.a = adsr_fil.s;
}
voice->f_phase = decay;
#endif
voice->f_control_sign = adsr_fil.a;
voice->f_control_sign_slow = adsr_fil.a;
voice->active = true;
voice->phase = attack;
voc_act += 1;
/*
* add oscillator
*/
#ifdef USE_UNISON
if (unison > 0 )
{
/*
* shift first oscillator down
*/
osc->addVal = midi_note_to_add[note] + ((0 - (unison * 0.5)) * midi_note_to_add50c[note] * detune / unison);
}
else
#endif
{
osc->addVal = midi_note_to_add[note];
}
osc->samplePos = 0;
osc->waveForm = &selectedWaveForm;
osc->dest = voice->lastSample;
osc->pan_l = 1;
osc->pan_r = 1;
osc_act += 1;
#ifdef USE_UNISON
int8_t pan = 1;
/*
* attach more oscillators to voice
*/
for (int i = 0; i < unison; i++)
{
osc = getFreeOsc();
if (osc == NULL)
{
//Serial.printf("voc: %d, osc: %d\n", voc_act, osc_act);
return ;
}
osc->addVal = midi_note_to_add[note] + ((i + 1 - (unison * 0.5)) * midi_note_to_add50c[note] * detune / unison);
osc->samplePos = (uint32_t)random(1 << 31); /* otherwise it sounds ... bad!? */
osc->waveForm = &selectedWaveForm2;
osc->dest = voice->lastSample;
/*
* put last osc in the middle
*/
if ((unison - 1) == i)
{
osc->pan_l = 1;
osc->pan_r = 1;
}
else if (pan == 1)
{
osc->pan_l = 1;
osc->pan_r = 0.5;
}
else
{
osc->pan_l = 0.5;
osc->pan_r = 1;
}
pan = -pan; /* make a stereo sound by putting the oscillator left/right */
osc_act += 1;
}
#else
osc = getFreeOsc();
if (osc != NULL)
{
if (note + 12 < 128)
{
osc->addVal = midi_note_to_add[note + 12];
osc->samplePos = 0; /* we could add some offset maybe */
osc->waveForm = &selectedWaveForm2;
osc->dest = voice->lastSample;
osc->pan_l = 1;
osc->pan_r = 1;
osc_act += 1;
}
}
#endif
/*
* trying to avoid audible suprises
*/
Filter_Reset(&voice->filterL);
Filter_Reset(&voice->filterR);
Filter_Process(&voice->lastSample[0], &voice->filterL);
Filter_Process(&voice->lastSample[0], &voice->filterL);
Filter_Process(&voice->lastSample[0], &voice->filterL);
Filter_Process(&voice->lastSample[1], &voice->filterR);
Filter_Process(&voice->lastSample[1], &voice->filterR);
Filter_Process(&voice->lastSample[1], &voice->filterR);
}
inline void Synth_NoteOff(uint8_t ch, uint8_t note)
{
for (int i = 0; i < MAX_POLY_VOICE ; i++)
{
if ((voicePlayer[i].active) && (voicePlayer[i].midiNote == note))
{
voicePlayer[i].phase = release;
}
}
}
void Synth_ModulationWheel(uint8_t ch, float value)
{
modulationDepth = value;
}
void Synth_ModulationSpeed(uint8_t ch, float value)
{
modulationSpeed = value * 10;
//Status_ValueChangedFloat("ModulationSpeed", modulationSpeed);
}
void Synth_ModulationPitch(uint8_t ch, float value)
{
modulationPitch = value * 5;
//Status_ValueChangedFloat("ModulationDepth", modulationPitch);
}
void Synth_PitchBend(uint8_t ch, float bend)
{
pitchBendValue = bend;
Serial.printf("pitchBendValue: %0.3f\n", pitchBendValue);
}
void Synth_SetParam(uint8_t slider, float value)
{
switch (slider)
{
case SYNTH_PARAM_VEL_ENV_ATTACK:
adsr_vol.a = (0.00005 * pow(5000, 1.0f - value));
Serial.printf("voice volume attack: %0.6f\n", adsr_vol.a);
break;
case SYNTH_PARAM_VEL_ENV_DECAY:
adsr_vol.d = (0.00005 * pow(5000, 1.0f - value));
Serial.printf("voice volume decay: %0.6f\n", adsr_vol.d);
break;
case SYNTH_PARAM_VEL_ENV_SUSTAIN:
adsr_vol.s = (0.01 * pow(100, value));
Serial.printf("voice volume sustain: %0.6f\n", adsr_vol.s);
break;
case SYNTH_PARAM_VEL_ENV_RELEASE:
adsr_vol.r = (0.0001 * pow(100, 1.0f - value));
Serial.printf("voice volume release: %0.6f\n", adsr_vol.r);
break;
case SYNTH_PARAM_FIL_ENV_ATTACK:
#if 0
adsr_fil.a = (0.00005 * pow(5000, 1.0f - value));
#else
adsr_fil.a = value;
#endif
Serial.printf("voice filter attack: %0.6f\n", adsr_fil.a);
break;
case SYNTH_PARAM_FIL_ENV_DECAY:
adsr_fil.d = (0.00005 * pow(5000, 1.0f - value));
Serial.printf("voice filter decay: %0.6f\n", adsr_fil.d);
break;
case SYNTH_PARAM_FIL_ENV_SUSTAIN:
adsr_fil.s = value;
Serial.printf("voice filter sustain: %0.6f\n", adsr_fil.s);
break;
case SYNTH_PARAM_FIL_ENV_RELEASE:
adsr_fil.r = (0.0001 * pow(100, 1.0f - value));
Serial.printf("voice filter release: %0.6f\n", adsr_fil.r);
break;
#ifdef USE_UNISON
case SYNTH_PARAM_DETUNE_1:
detune = value;
Serial.printf("detune: %0.3f cent\n", detune * 50);
break;
case SYNTH_PARAM_UNISON_2:
unison = (uint8_t)(MAX_DETUNE * value);
Serial.printf("unison: 1 + %d\n", unison);
break;
#else
case SYNTH_PARAM_WAVEFORM_1:
{
uint8_t selWaveForm = (value) * (WAVEFORM_TYPE_COUNT);
selectedWaveForm = waveFormLookUp[selWaveForm];
Serial.printf("selWaveForm: %d\n", selWaveForm);
}
break;
case SYNTH_PARAM_WAVEFORM_2:
{
uint8_t selWaveForm = (value) * (WAVEFORM_TYPE_COUNT);
selectedWaveForm2 = waveFormLookUp[selWaveForm];
Serial.printf("selWaveForm2: %d\n", selWaveForm);
}
break;
#endif
case SYNTH_PARAM_MAIN_FILT_CUTOFF:
filtCutoff = value;
Serial.printf("main filter cutoff: %0.3f\n", filtCutoff);
Filter_Calculate(filtCutoff, filtReso, &filterGlobalC);
break;
case SYNTH_PARAM_MAIN_FILT_RESO:
filtReso = 0.5f + 10 * value * value * value; /* min q is 0.5 here */
Serial.printf("main filter reso: %0.3f\n", filtReso);
Filter_Calculate(filtCutoff, filtReso, &filterGlobalC);
break;
case SYNTH_PARAM_VOICE_FILT_RESO:
soundFiltReso = 0.5f + 10 * value * value * value; /* min q is 0.5 here */
Serial.printf("voice filter reso: %0.3f\n", soundFiltReso);
break;
case SYNTH_PARAM_VOICE_NOISE_LEVEL:
soundNoiseLevel = value;
Serial.printf("voice noise level: %0.3f\n", soundNoiseLevel);
break;
default:
/* not connected */
break;
}
}