-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
112 lines (85 loc) · 3.16 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import joblib
import datetime
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
import pandas as pd
import numpy as np
from fredapi import Fred
START_DATE = datetime.date(1995, 1, 1)
FRED_API_KEY = 'fcbbe7992aa80d097aed20dd9d7b2ed3'
import us
states = [x.abbr for x in us.STATES]
def project_claims(state, covid_wt, sum_df, epi_enc, trace, verbose=False):
''' get labor market data from STL '''
A = 0
κ = trace["κ"]
β = trace["β"]
def states_data(suffix, state, fred):
''' gets data from FRED for a list of indices '''
idx = "ICSA" if state == "US" else state + suffix
x = pd.Series(
fred.get_series(
idx, observation_start=START_DATE), name=idx
)
x.name = state
return x
def forecast_claims(initval, initdate, enddate, covid_wt):
''' project initial claims '''
μ_β = sum_df.loc["β", "mean"]
μ_κ = sum_df.loc[["κ: COVID", "κ: Katrina"], "mean"].values
μ_decay = covid_wt * μ_κ[0] + (1 - covid_wt) * μ_κ[1]
dt_range = (
pd.date_range(start=initdate, end=enddate, freq="W") -
pd.tseries.offsets.Day(1)
)
max_x = len(dt_range)
w = np.arange(max_x)
covid_idx = list(epi_enc.classes_).index("COVID")
katrina_idx = list(epi_enc.classes_).index("Katrina")
decay = (
covid_wt * κ[:, covid_idx] +
(1 - covid_wt) * κ[:, katrina_idx]
)
μ = np.exp(-decay * np.power(w.reshape(-1, 1), β))
μ_df = pd.DataFrame(
np.percentile(μ, q=[5, 25, 50, 75, 95], axis=1).T,
columns=["5th", "25th", "50th", "75th", "95th"]
) * initval
μ_df["period"] = w
ic = np.zeros(max_x)
ic[0] = 1
for j in np.arange(1, max_x, 1):
ic[j] = np.exp(-μ_decay * np.power(j, μ_β))
df = pd.concat(
[
pd.Series(np.arange(max_x), name="period"),
pd.Series(ic, name="ic_ratio"),
pd.Series(ic * initval, name="ic"),
pd.Series((ic * initval).cumsum(), name="cum_ic")
], axis=1
)
df.index = dt_range
μ_df.index = dt_range
return df, μ_df
fred = Fred(api_key=FRED_API_KEY)
ic_raw = states_data("ICLAIMS", state, fred)
init_value, init_date, last_date = (
ic_raw[ic_raw.idxmax()], ic_raw.idxmax(), ic_raw.index[-1]
)
end_date = last_date + pd.tseries.offsets.QuarterEnd()
if verbose:
print(
f'State: {state}, {init_value}, {init_date}, '
f'{end_date}, {last_date}'
)
ic_fct, ic_pct = forecast_claims(
init_value, init_date, end_date, covid_wt
)
ic_fct["state"] = state
ic_pct["state"] = state
ic_pct = ic_pct.reset_index().rename(columns={"index": "obsdate"})
return ic_pct, last_date.date().isoformat()
def read_pickled(fname):
with open(fname, "rb") as f:
claims_dict = joblib.load(f)
return claims_dict