This repository has been archived by the owner on Dec 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 855
/
trainer.py
202 lines (158 loc) · 6.48 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import tensorflow as tf
NUM_CLASSES = 10
EMBEDDING_DIM = 7
def model_fn(features, labels, mode, params):
# build model
global_step = tf.train.get_global_step()
embedding_table = tf.get_variable('embedding_table', shape=(NUM_CLASSES, EMBEDDING_DIM), dtype=tf.float32)
embeddings = tf.nn.embedding_lookup(embedding_table, features)
# lstm model
batch_size = params['train_batch_size']
sequence_length = params['sequence_length']
cell = tf.nn.rnn_cell.BasicLSTMCell(EMBEDDING_DIM)
outputs, final_state = tf.nn.dynamic_rnn(cell, embeddings, dtype=tf.float32)
# flatten the batch and sequence dimensions
flattened = tf.reshape(outputs, (-1, EMBEDDING_DIM))
flattened_logits = tf.layers.dense(flattened, NUM_CLASSES)
logits = tf.reshape(flattened_logits, (-1, sequence_length, NUM_CLASSES))
predictions = tf.multinomial(flattened_logits, num_samples=1)
loss = None
train_op = None
if mode == tf.estimator.ModeKeys.TRAIN:
# define loss
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits))
# define train_op
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# wrapper to make the optimizer work with TPUs
if params['use_tpu']:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
train_op = optimizer.minimize(loss, global_step=global_step)
if params['use_tpu']:
# TPU version of EstimatorSpec
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
else:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
def train_input_fn(params={}):
# make some fake data of labels
data_length = 100
x = np.random.randint(0, NUM_CLASSES, data_length)
y = np.random.randint(0, NUM_CLASSES, data_length)
x_tensor = tf.constant(x, dtype=tf.int32)
y_tensor = tf.constant(y, dtype=tf.int32)
dataset = tf.data.Dataset.from_tensors((x_tensor, y_tensor))
dataset = dataset.repeat()
# TPUs need to know the full shape of tensors
# so we use a fixed sequence length
sequence_length = params.get('sequence_length', 5)
def get_sequences(x_tensor, y_tensor):
index = tf.random_uniform([1], minval=0, maxval=data_length-sequence_length, dtype=tf.int32)[0]
x_sequence = x_tensor[index:index+sequence_length]
y_sequence = y_tensor[index:index+sequence_length]
return (x_sequence, y_sequence)
dataset = dataset.map(get_sequences)
# TPUEstimator passes params when calling input_fn
batch_size = params.get('train_batch_size', 16)
dataset = dataset.batch(batch_size, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, sequence_length])
labels_shape = labels.get_shape().merge_with([batch_size, sequence_length])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
def main(args):
# pass the args as params so the model_fn can use
# the TPU specific args
params = vars(args)
if args.use_tpu:
# additional configs required for using TPUs
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu)
tpu_config = tf.contrib.tpu.TPUConfig(
num_shards=8, # using Cloud TPU v2-8
iterations_per_loop=args.save_checkpoints_steps)
# use the TPU version of RunConfig
config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=args.model_dir,
tpu_config=tpu_config,
save_checkpoints_steps=args.save_checkpoints_steps,
save_summary_steps=100)
# TPUEstimator
estimator = tf.contrib.tpu.TPUEstimator(
model_fn=model_fn,
config=config,
params=params,
train_batch_size=args.train_batch_size,
eval_batch_size=32,
export_to_tpu=False)
else:
config = tf.estimator.RunConfig(model_dir=args.model_dir)
estimator = tf.estimator.Estimator(
model_fn,
config=config,
params=params)
estimator.train(train_input_fn, max_steps=args.max_steps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--max-steps',
type=int,
default=1000,
help='The total number of steps to train the model.')
parser.add_argument(
'--sequence-length',
type=int,
default=5,
help='The sequence length for an LSTM model.')
parser.add_argument(
'--train-batch-size',
type=int,
default=16,
help='The training batch size. The training batch is divided evenly across the TPU cores.')
parser.add_argument(
'--save-checkpoints-steps',
type=int,
default=100,
help='The number of training steps before saving each checkpoint.')
parser.add_argument(
'--use-tpu',
action='store_true',
help='Whether to use TPU.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on AI Platform.')
args, _ = parser.parse_known_args()
main(args)