This repository has been archived by the owner on Dec 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 855
/
trainer.py
107 lines (79 loc) · 3.23 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import LSTM
def build_model():
inputs = tf.keras.Input(shape=(5, 3))
encoded = tf.keras.layers.LSTM(10)(inputs)
outputs = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(encoded)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
def train_input_fn():
batch_size = 16
# make some fake data
x = np.random.rand(100, 5, 3)
y = np.random.rand(100, 1)
# TPUs currently do not support float64
x_tensor = tf.constant(x, dtype=tf.float32)
y_tensor = tf.constant(y, dtype=tf.float32)
# create tf.data.Dataset
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))
dataset = dataset.repeat().shuffle(32).batch(batch_size, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, None, None])
labels_shape = labels.get_shape().merge_with([batch_size, None])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
def main(args):
model = build_model()
if args.use_tpu:
# distribute over TPU cores
# Note: This requires TensorFlow 1.11
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu)
strategy = tf.contrib.tpu.TPUDistributionStrategy(tpu_cluster_resolver)
model = tf.contrib.tpu.keras_to_tpu_model(
model, strategy=strategy)
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
loss_fn = tf.losses.log_loss
model.compile(optimizer, loss_fn)
model.fit(train_input_fn, epochs=3, steps_per_epoch=10)
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
model.save(os.path.join(args.model_dir, 'model.hd5'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--use-tpu',
action='store_true',
help='Whether to use TPU.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on AI Platform.')
args, _ = parser.parse_known_args()
main(args)