This repository has been archived by the owner on Dec 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 855
/
trainer.py
140 lines (104 loc) · 4.65 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import os
import tensorflow as tf
from tensorflow.contrib.cluster_resolver import TPUClusterResolver
def tpu_computation(features, labels):
# Similar to the role of model_fn, the TPU function builds the part of the graph to be run on TPUs
# build model
hidden = tf.layers.dense(features, 10, activation=tf.nn.relu)
outputs = tf.layers.dense(hidden, 1)
loss = tf.nn.l2_loss(outputs - labels)
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# Wrap the optimizer
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
global_step = tf.train.get_or_create_global_step()
train_op = optimizer.minimize(loss, global_step=global_step)
# TPU functions must return zero-or more Tensor values followed by zero or more Operations.
return global_step, loss, train_op
def train_input_fn():
# data input function runs on the CPU, not TPU
# make some fake regression data
x = np.random.rand(100, 5)
w = np.random.rand(5)
y = np.sum(x * w, axis=1)
# TPUs currently do not support float64
x_tensor = tf.constant(x, dtype=tf.float32)
y_tensor = tf.constant(y, dtype=tf.float32)
# create tf.data.Dataset
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))
# TPUs need to know all dimensions including batch size
batch_size = 16
dataset = dataset.repeat().shuffle(32).batch(batch_size)#, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, None])
labels_shape = labels.get_shape().merge_with([batch_size])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
def main(args):
# unpack the tensor batch to be used as the list of inputs of the TPU function
dataset = train_input_fn()
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
# mark part of the graph to be run on the TPUs
global_step_tensor, loss_tensor = tf.contrib.tpu.rewrite(tpu_computation, [features, labels])
# utility ops
tpu_init = tf.contrib.tpu.initialize_system()
tpu_shutdown = tf.contrib.tpu.shutdown_system()
variables_init = tf.global_variables_initializer()
saver = tf.train.Saver()
# get the TPU resource's grpc url
# Note: when running on AI Platform, args.tpu should be left as None
tpu_grpc_url = TPUClusterResolver(tpu=args.tpu).get_master()
sess = tf.Session(tpu_grpc_url)
sess.run(tpu_init)
sess.run(variables_init)
for i in range(args.max_steps):
# the tensor values in the TPU function are returned in a list, and the operations in the TPU function are called with no return value
global_step, loss = sess.run([global_step_tensor, loss_tensor])
if i % args.save_checkpoints_steps == 0:
saver.save(sess, os.path.join(args.model_dir, 'model.ckpt'), global_step=global_step)
tf.logging.info('global_step: {}, loss: {}'.format(global_step, loss))
sess.run(tpu_shutdown)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--max-steps',
type=int,
default=1000,
help='The total number of steps to train the model.')
parser.add_argument(
'--save-checkpoints-steps',
type=int,
default=100,
help='The number of training steps before saving each checkpoint.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on AI Platform.')
args, _ = parser.parse_known_args()
main(args)