-
Notifications
You must be signed in to change notification settings - Fork 2k
/
get-model.js
129 lines (115 loc) · 4.63 KB
/
get-model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(modelId, project, location = 'us-central1') {
// [START aiplatform_get_model_sample]
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const modelId = 'YOUR_MODEL_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);
async function getModel() {
// Configure the parent resource
const name = `projects/${project}/locations/${location}/models/${modelId}`;
const request = {
name,
};
// Get and print out a list of all the endpoints for this resource
const [response] = await modelServiceClient.getModel(request);
console.log('Get model response');
console.log(`\tName : ${response.name}`);
console.log(`\tDisplayName : ${response.displayName}`);
console.log(`\tDescription : ${response.description}`);
console.log(`\tMetadata schema uri : ${response.metadataSchemaUri}`);
console.log(`\tMetadata : ${JSON.stringify(response.metadata)}`);
console.log(`\tTraining pipeline : ${response.trainingPipeline}`);
console.log(`\tArtifact uri : ${response.artifactUri}`);
console.log(
`\tSupported deployment resource types : \
${response.supportedDeploymentResourceTypes}`
);
console.log(
`\tSupported input storage formats : \
${response.supportedInputStorageFormats}`
);
console.log(
`\tSupported output storage formats : \
${response.supportedOutputStoragFormats}`
);
console.log(`\tCreate time : ${JSON.stringify(response.createTime)}`);
console.log(`\tUpdate time : ${JSON.stringify(response.updateTime)}`);
console.log(`\tLabels : ${JSON.stringify(response.labels)}`);
const predictSchemata = response.predictSchemata;
console.log('\tPredict schemata');
console.log(`\tInstance schema uri : ${predictSchemata.instanceSchemaUri}`);
console.log(
`\tParameters schema uri : ${predictSchemata.prametersSchemaUri}`
);
console.log(
`\tPrediction schema uri : ${predictSchemata.predictionSchemaUri}`
);
const [supportedExportFormats] = response.supportedExportFormats;
console.log('\tSupported export formats');
console.log(`\t${supportedExportFormats}`);
const containerSpec = response.containerSpec;
console.log('\tContainer Spec');
if (!containerSpec) {
console.log(`\t\t${JSON.stringify(containerSpec)}`);
console.log('\t\tImage uri : {}');
console.log('\t\tCommand : {}');
console.log('\t\tArgs : {}');
console.log('\t\tPredict route : {}');
console.log('\t\tHealth route : {}');
console.log('\t\tEnv');
console.log('\t\t\t{}');
console.log('\t\tPort');
console.log('\t\t{}');
} else {
console.log(`\t\t${JSON.stringify(containerSpec)}`);
console.log(`\t\tImage uri : ${containerSpec.imageUri}`);
console.log(`\t\tCommand : ${containerSpec.command}`);
console.log(`\t\tArgs : ${containerSpec.args}`);
console.log(`\t\tPredict route : ${containerSpec.predictRoute}`);
console.log(`\t\tHealth route : ${containerSpec.healthRoute}`);
const env = containerSpec.env;
console.log('\t\tEnv');
console.log(`\t\t\t${JSON.stringify(env)}`);
const ports = containerSpec.ports;
console.log('\t\tPort');
console.log(`\t\t\t${JSON.stringify(ports)}`);
}
const [deployedModels] = response.deployedModels;
console.log('\tDeployed models');
console.log('\t\t', deployedModels);
}
getModel();
// [END aiplatform_get_model_sample]
}
process.on('unhandledRejection', err => {
console.error(err.message);
process.exitCode = 1;
});
main(...process.argv.slice(2));