-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
submit_job_to_cluster.py
190 lines (156 loc) · 5.98 KB
/
submit_job_to_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START dataproc_quickstart]
"""
Command-line program to create a Dataproc cluster,
run a PySpark job located in Cloud Storage on the cluster,
then delete the cluster after the job completes.
Usage:
python submit_job_to_cluster --project_id <PROJECT_ID> --region <REGION> \
--cluster_name <CLUSTER_NAME> --job_file_path <GCS_JOB_FILE_PATH>
"""
import argparse
import os
import re
from google.cloud import dataproc_v1
from google.cloud import storage
DEFAULT_FILENAME = "pyspark_sort.py"
waiting_callback = False
def get_pyspark_file(pyspark_file=None):
if pyspark_file:
f = open(pyspark_file, "rb")
return f, os.path.basename(pyspark_file)
else:
"""Gets the PySpark file from current directory."""
current_dir = os.path.dirname(os.path.abspath(__file__))
f = open(os.path.join(current_dir, DEFAULT_FILENAME), "rb")
return f, DEFAULT_FILENAME
def get_region_from_zone(zone):
try:
region_as_list = zone.split("-")[:-1]
return "-".join(region_as_list)
except (AttributeError, IndexError, ValueError):
raise ValueError("Invalid zone provided, please check your input.")
def upload_pyspark_file(project, bucket_name, filename, spark_file):
"""Uploads the PySpark file in this directory to the configured input
bucket."""
print("Uploading pyspark file to Cloud Storage.")
client = storage.Client(project=project)
bucket = client.get_bucket(bucket_name)
blob = bucket.blob(filename)
blob.upload_from_file(spark_file)
def download_output(project, cluster_id, output_bucket, job_id):
"""Downloads the output file from Cloud Storage and returns it as a
string."""
print("Downloading output file.")
client = storage.Client(project=project)
bucket = client.get_bucket(output_bucket)
output_blob = "google-cloud-dataproc-metainfo/{}/jobs/{}/driveroutput.000000000".format(
cluster_id, job_id
)
return bucket.blob(output_blob).download_as_string()
# [START dataproc_create_cluster]
def quickstart(project_id, region, cluster_name, gcs_bucket, pyspark_file):
# Create the cluster client.
cluster_client = dataproc_v1.ClusterControllerClient(
client_options={"api_endpoint": "{}-dataproc.googleapis.com:443".format(region)}
)
# Create the cluster config.
cluster = {
"project_id": project_id,
"cluster_name": cluster_name,
"config": {
"master_config": {"num_instances": 1, "machine_type_uri": "n1-standard-2"},
"worker_config": {"num_instances": 2, "machine_type_uri": "n1-standard-2"},
},
}
# Create the cluster.
operation = cluster_client.create_cluster(
request={"project_id": project_id, "region": region, "cluster": cluster}
)
result = operation.result()
print("Cluster created successfully: {}".format(result.cluster_name))
# [END dataproc_create_cluster]
spark_file, spark_filename = get_pyspark_file(pyspark_file)
upload_pyspark_file(project_id, gcs_bucket, spark_filename, spark_file)
# [START dataproc_submit_job]
# Create the job client.
job_client = dataproc_v1.JobControllerClient(
client_options={"api_endpoint": "{}-dataproc.googleapis.com:443".format(region)}
)
# Create the job config.
job = {
"placement": {"cluster_name": cluster_name},
"pyspark_job": {"main_python_file_uri": "gs://{}/{}".format(gcs_bucket, spark_filename)},
}
operation = job_client.submit_job_as_operation(
request={"project_id": project_id, "region": region, "job": job}
)
response = operation.result()
# Dataproc job output is saved to the Cloud Storage bucket
# allocated to the job. Use regex to obtain the bucket and blob info.
matches = re.match("gs://(.*?)/(.*)", response.driver_output_resource_uri)
output = (
storage.Client()
.get_bucket(matches.group(1))
.blob(f"{matches.group(2)}.000000000")
.download_as_string()
)
print(f"Job finished successfully: {output}\r\n")
# [END dataproc_submit_job]
# [START dataproc_delete_cluster]
# Delete the cluster once the job has terminated.
operation = cluster_client.delete_cluster(
request={
"project_id": project_id,
"region": region,
"cluster_name": cluster_name,
}
)
operation.result()
print("Cluster {} successfully deleted.".format(cluster_name))
# [END dataproc_delete_cluster]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--project_id",
type=str,
required=True,
help="Project to use for creating resources.",
)
parser.add_argument(
"--region",
type=str,
required=True,
help="Region where the resources should live.",
)
parser.add_argument(
"--cluster_name",
type=str,
required=True,
help="Name to use for creating a cluster.",
)
parser.add_argument(
"--gcs_bucket", help="Bucket to upload Pyspark file to", required=True
)
parser.add_argument(
"--pyspark_file", help="Pyspark filename. Defaults to pyspark_sort.py"
)
args = parser.parse_args()
quickstart(args.project_id, args.region, args.cluster_name, args.gcs_bucket, args.pyspark_file)
# [END dataproc_quickstart]