-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathjson_dataset.py
551 lines (513 loc) · 22.9 KB
/
json_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Representation of the standard COCO json dataset format.
When working with a new dataset, we strongly suggest to convert the dataset into
the COCO json format and use the existing code; it is not recommended to write
code to support new dataset formats.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
from six.moves import cPickle as pickle
import logging
import numpy as np
import os
import scipy.sparse
# Must happen before importing COCO API (which imports matplotlib)
import utils.env as envu
envu.set_up_matplotlib()
# COCO API
from pycocotools import mask as COCOmask
from pycocotools.coco import COCO
import utils.boxes as box_utils
from core.config import cfg
from utils.timer import Timer
from .dataset_catalog import ANN_FN
from .dataset_catalog import DATASETS
from .dataset_catalog import IM_DIR
from .dataset_catalog import IM_PREFIX
logger = logging.getLogger(__name__)
class JsonDataset(object):
"""A class representing a COCO json dataset."""
def __init__(self, name, img_id, new_anns, coco):
assert name in DATASETS.keys(), \
'Unknown dataset name: {}'.format(name)
assert os.path.exists(DATASETS[name][IM_DIR]), \
'Image directory \'{}\' not found'.format(DATASETS[name][IM_DIR])
assert os.path.exists(DATASETS[name][ANN_FN]), \
'Annotation file \'{}\' not found'.format(DATASETS[name][ANN_FN])
logger.debug('Creating: {}'.format(name))
self.name = name
self.image_directory = DATASETS[name][IM_DIR]
self.image_prefix = (
'' if IM_PREFIX not in DATASETS[name] else DATASETS[name][IM_PREFIX]
)
# self.COCO = COCO(DATASETS[name][ANN_FN])
self.COCO = coco
self.debug_timer = Timer()
# Set up dataset classes
category_ids = self.COCO.getCatIds()
categories = [c['name'] for c in self.COCO.loadCats(category_ids)]
self.category_to_id_map = dict(zip(categories, category_ids))
self.classes = ['__background__'] + categories
self.num_classes = len(self.classes)
self.json_category_id_to_contiguous_id = {
v: i + 1
for i, v in enumerate(self.COCO.getCatIds())
}
self.contiguous_category_id_to_json_id = {
v: k
for k, v in self.json_category_id_to_contiguous_id.items()
}
self._init_keypoints()
# Add--------------
self.img_id = img_id
self.new_anns = new_anns
# # Set cfg.MODEL.NUM_CLASSES
# if cfg.MODEL.NUM_CLASSES != -1:
# assert cfg.MODEL.NUM_CLASSES == 2 if cfg.MODEL.KEYPOINTS_ON else self.num_classes, \
# "number of classes should equal when using multiple datasets"
# else:
# cfg.MODEL.NUM_CLASSES = 2 if cfg.MODEL.KEYPOINTS_ON else self.num_classes
@property
def cache_path(self):
cache_path = os.path.abspath(os.path.join(cfg.DATA_DIR, 'cache'))
if not os.path.exists(cache_path):
os.makedirs(cache_path)
return cache_path
@property
def valid_cached_keys(self):
""" Can load following key-ed values from the cached roidb file
'image'(image path) and 'flipped' values are already filled on _prep_roidb_entry,
so we don't need to overwrite it again.
"""
keys = ['boxes', 'segms', 'gt_classes', 'seg_areas', 'gt_overlaps',
'is_crowd', 'box_to_gt_ind_map']
if self.keypoints is not None:
keys += ['gt_keypoints', 'has_visible_keypoints']
return keys
def get_roidb(
self,
gt=False,
proposal_file=None,
min_proposal_size=2,
proposal_limit=-1,
crowd_filter_thresh=0
):
"""Return an roidb corresponding to the json dataset. Optionally:
- include ground truth boxes in the roidb
- add proposals specified in a proposals file
- filter proposals based on a minimum side length
- filter proposals that intersect with crowd regions
"""
assert gt is True or crowd_filter_thresh == 0, \
'Crowd filter threshold must be 0 if ground-truth annotations ' \
'are not included.'
# image_ids = self.COCO.getImgIds()
# image_ids.sort()
image_ids = [self.img_id]
# if cfg.DEBUG:
# roidb = copy.deepcopy(self.COCO.loadImgs(image_ids))[:100]
# else:
# roidb = copy.deepcopy(self.COCO.loadImgs(image_ids))
roidb = copy.deepcopy(self.COCO.loadImgs(image_ids))
for entry in roidb:
self._prep_roidb_entry(entry)
if gt:
'''
# Include ground-truth object annotations
cache_filepath = os.path.join(self.cache_path, self.name+'_gt_roidb.pkl')
if os.path.exists(cache_filepath) and not cfg.DEBUG:
self.debug_timer.tic()
self._add_gt_from_cache(roidb, cache_filepath)
logger.debug(
'_add_gt_from_cache took {:.3f}s'.
format(self.debug_timer.toc(average=False))
)
else:
self.debug_timer.tic()
for entry in roidb:
self._add_gt_annotations(entry)
logger.debug(
'_add_gt_annotations took {:.3f}s'.
format(self.debug_timer.toc(average=False))
)
if not cfg.DEBUG:
with open(cache_filepath, 'wb') as fp:
pickle.dump(roidb, fp, pickle.HIGHEST_PROTOCOL)
logger.info('Cache ground truth roidb to %s', cache_filepath)
'''
for entry in roidb:
self._add_gt_annotations(entry)
if proposal_file is not None:
# Include proposals from a file
self.debug_timer.tic()
self._add_proposals_from_file(
roidb, proposal_file, min_proposal_size, proposal_limit,
crowd_filter_thresh
)
logger.debug(
'_add_proposals_from_file took {:.3f}s'.
format(self.debug_timer.toc(average=False))
)
_add_class_assignments(roidb)
return roidb
def _prep_roidb_entry(self, entry):
"""Adds empty metadata fields to an roidb entry."""
# Reference back to the parent dataset
entry['dataset'] = self
# Make file_name an abs path
im_path = os.path.join(
self.image_directory, self.image_prefix + entry['file_name']
)
assert os.path.exists(im_path), 'Image \'{}\' not found'.format(im_path)
entry['image'] = im_path
entry['flipped'] = False
entry['has_visible_keypoints'] = False
# Empty placeholders
entry['boxes'] = np.empty((0, 4), dtype=np.float32)
entry['segms'] = []
entry['gt_classes'] = np.empty((0), dtype=np.int32)
entry['seg_areas'] = np.empty((0), dtype=np.float32)
entry['gt_overlaps'] = scipy.sparse.csr_matrix(
np.empty((0, self.num_classes), dtype=np.float32)
)
entry['is_crowd'] = np.empty((0), dtype=np.bool)
# 'box_to_gt_ind_map': Shape is (#rois). Maps from each roi to the index
# in the list of rois that satisfy np.where(entry['gt_classes'] > 0)
entry['box_to_gt_ind_map'] = np.empty((0), dtype=np.int32)
if self.keypoints is not None:
entry['gt_keypoints'] = np.empty(
(0, 3, self.num_keypoints), dtype=np.int32
)
# Remove unwanted fields that come from the json file (if they exist)
for k in ['date_captured', 'url', 'license', 'file_name']:
if k in entry:
del entry[k]
def _add_gt_annotations(self, entry):
"""Add ground truth annotation metadata to an roidb entry."""
ann_ids = self.COCO.getAnnIds(imgIds=entry['id'], iscrowd=None)
# objs = self.COCO.loadAnns(ann_ids)
objs = self.new_anns
# Sanitize bboxes -- some are invalid
valid_objs = []
valid_segms = []
width = entry['width']
height = entry['height']
for obj in objs:
# crowd regions are RLE encoded and stored as dicts
if isinstance(obj['segmentation'], list):
# Valid polygons have >= 3 points, so require >= 6 coordinates
obj['segmentation'] = [
p for p in obj['segmentation'] if len(p) >= 6
]
if obj['area'] < cfg.TRAIN.GT_MIN_AREA:
continue
if 'ignore' in obj and obj['ignore'] == 1:
continue
# Convert form (x1, y1, w, h) to (x1, y1, x2, y2)
x1, y1, x2, y2 = box_utils.xywh_to_xyxy(obj['bbox'])
x1, y1, x2, y2 = box_utils.clip_xyxy_to_image(
x1, y1, x2, y2, height, width
)
# Require non-zero seg area and more than 1x1 box size
if obj['area'] > 0 and x2 > x1 and y2 > y1:
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
valid_segms.append(obj['segmentation'])
num_valid_objs = len(valid_objs)
boxes = np.zeros((num_valid_objs, 4), dtype=entry['boxes'].dtype)
gt_classes = np.zeros((num_valid_objs), dtype=entry['gt_classes'].dtype)
gt_overlaps = np.zeros(
(num_valid_objs, self.num_classes),
dtype=entry['gt_overlaps'].dtype
)
seg_areas = np.zeros((num_valid_objs), dtype=entry['seg_areas'].dtype)
is_crowd = np.zeros((num_valid_objs), dtype=entry['is_crowd'].dtype)
box_to_gt_ind_map = np.zeros(
(num_valid_objs), dtype=entry['box_to_gt_ind_map'].dtype
)
if self.keypoints is not None:
gt_keypoints = np.zeros(
(num_valid_objs, 3, self.num_keypoints),
dtype=entry['gt_keypoints'].dtype
)
im_has_visible_keypoints = False
for ix, obj in enumerate(valid_objs):
cls = self.json_category_id_to_contiguous_id[obj['category_id']]
boxes[ix, :] = obj['clean_bbox']
gt_classes[ix] = cls
seg_areas[ix] = obj['area']
is_crowd[ix] = obj['iscrowd']
box_to_gt_ind_map[ix] = ix
if self.keypoints is not None:
gt_keypoints[ix, :, :] = self._get_gt_keypoints(obj)
if np.sum(gt_keypoints[ix, 2, :]) > 0:
im_has_visible_keypoints = True
if obj['iscrowd']:
# Set overlap to -1 for all classes for crowd objects
# so they will be excluded during training
gt_overlaps[ix, :] = -1.0
else:
gt_overlaps[ix, cls] = 1.0
entry['boxes'] = np.append(entry['boxes'], boxes, axis=0)
entry['segms'].extend(valid_segms)
# To match the original implementation:
# entry['boxes'] = np.append(
# entry['boxes'], boxes.astype(np.int).astype(np.float), axis=0)
entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes)
entry['seg_areas'] = np.append(entry['seg_areas'], seg_areas)
entry['gt_overlaps'] = np.append(
entry['gt_overlaps'].toarray(), gt_overlaps, axis=0
)
entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps'])
entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd)
entry['box_to_gt_ind_map'] = np.append(
entry['box_to_gt_ind_map'], box_to_gt_ind_map
)
if self.keypoints is not None:
entry['gt_keypoints'] = np.append(
entry['gt_keypoints'], gt_keypoints, axis=0
)
entry['has_visible_keypoints'] = im_has_visible_keypoints
def _add_gt_from_cache(self, roidb, cache_filepath):
"""Add ground truth annotation metadata from cached file."""
logger.info('Loading cached gt_roidb from %s', cache_filepath)
with open(cache_filepath, 'rb') as fp:
cached_roidb = pickle.load(fp)
assert len(roidb) == len(cached_roidb)
for entry, cached_entry in zip(roidb, cached_roidb):
values = [cached_entry[key] for key in self.valid_cached_keys]
boxes, segms, gt_classes, seg_areas, gt_overlaps, is_crowd, \
box_to_gt_ind_map = values[:7]
if self.keypoints is not None:
gt_keypoints, has_visible_keypoints = values[7:]
entry['boxes'] = np.append(entry['boxes'], boxes, axis=0)
entry['segms'].extend(segms)
# To match the original implementation:
# entry['boxes'] = np.append(
# entry['boxes'], boxes.astype(np.int).astype(np.float), axis=0)
entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes)
entry['seg_areas'] = np.append(entry['seg_areas'], seg_areas)
entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps)
entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd)
entry['box_to_gt_ind_map'] = np.append(
entry['box_to_gt_ind_map'], box_to_gt_ind_map
)
if self.keypoints is not None:
entry['gt_keypoints'] = np.append(
entry['gt_keypoints'], gt_keypoints, axis=0
)
entry['has_visible_keypoints'] = has_visible_keypoints
def _add_proposals_from_file(
self, roidb, proposal_file, min_proposal_size, top_k, crowd_thresh
):
"""Add proposals from a proposals file to an roidb."""
logger.info('Loading proposals from: {}'.format(proposal_file))
with open(proposal_file, 'r') as f:
proposals = pickle.load(f)
id_field = 'indexes' if 'indexes' in proposals else 'ids' # compat fix
_sort_proposals(proposals, id_field)
box_list = []
for i, entry in enumerate(roidb):
if i % 2500 == 0:
logger.info(' {:d}/{:d}'.format(i + 1, len(roidb)))
boxes = proposals['boxes'][i]
# Sanity check that these boxes are for the correct image id
assert entry['id'] == proposals[id_field][i]
# Remove duplicate boxes and very small boxes and then take top k
boxes = box_utils.clip_boxes_to_image(
boxes, entry['height'], entry['width']
)
keep = box_utils.unique_boxes(boxes)
boxes = boxes[keep, :]
keep = box_utils.filter_small_boxes(boxes, min_proposal_size)
boxes = boxes[keep, :]
if top_k > 0:
boxes = boxes[:top_k, :]
box_list.append(boxes)
_merge_proposal_boxes_into_roidb(roidb, box_list)
if crowd_thresh > 0:
_filter_crowd_proposals(roidb, crowd_thresh)
def _init_keypoints(self):
"""Initialize COCO keypoint information."""
self.keypoints = None
self.keypoint_flip_map = None
self.keypoints_to_id_map = None
self.num_keypoints = 0
# Thus far only the 'person' category has keypoints
if 'person' in self.category_to_id_map:
cat_info = self.COCO.loadCats([self.category_to_id_map['person']])
else:
return
# Check if the annotations contain keypoint data or not
if 'keypoints' in cat_info[0]:
keypoints = cat_info[0]['keypoints']
self.keypoints_to_id_map = dict(
zip(keypoints, range(len(keypoints))))
self.keypoints = keypoints
self.num_keypoints = len(keypoints)
if cfg.KRCNN.NUM_KEYPOINTS != -1:
assert cfg.KRCNN.NUM_KEYPOINTS == self.num_keypoints, \
"number of keypoints should equal when using multiple datasets"
else:
cfg.KRCNN.NUM_KEYPOINTS = self.num_keypoints
self.keypoint_flip_map = {
'left_eye': 'right_eye',
'left_ear': 'right_ear',
'left_shoulder': 'right_shoulder',
'left_elbow': 'right_elbow',
'left_wrist': 'right_wrist',
'left_hip': 'right_hip',
'left_knee': 'right_knee',
'left_ankle': 'right_ankle'}
def _get_gt_keypoints(self, obj):
"""Return ground truth keypoints."""
if 'keypoints' not in obj:
return None
kp = np.array(obj['keypoints'])
x = kp[0::3] # 0-indexed x coordinates
y = kp[1::3] # 0-indexed y coordinates
# 0: not labeled; 1: labeled, not inside mask;
# 2: labeled and inside mask
v = kp[2::3]
num_keypoints = len(obj['keypoints']) / 3
assert num_keypoints == self.num_keypoints
gt_kps = np.ones((3, self.num_keypoints), dtype=np.int32)
for i in range(self.num_keypoints):
gt_kps[0, i] = x[i]
gt_kps[1, i] = y[i]
gt_kps[2, i] = v[i]
return gt_kps
def add_proposals(roidb, rois, scales, crowd_thresh):
"""Add proposal boxes (rois) to an roidb that has ground-truth annotations
but no proposals. If the proposals are not at the original image scale,
specify the scale factor that separate them in scales.
"""
box_list = []
for i in range(len(roidb)):
inv_im_scale = 1. / scales[i]
idx = np.where(rois[:, 0] == i)[0]
box_list.append(rois[idx, 1:] * inv_im_scale)
_merge_proposal_boxes_into_roidb(roidb, box_list)
if crowd_thresh > 0:
_filter_crowd_proposals(roidb, crowd_thresh)
_add_class_assignments(roidb)
def _merge_proposal_boxes_into_roidb(roidb, box_list):
"""Add proposal boxes to each roidb entry."""
assert len(box_list) == len(roidb)
for i, entry in enumerate(roidb):
boxes = box_list[i]
num_boxes = boxes.shape[0]
gt_overlaps = np.zeros(
(num_boxes, entry['gt_overlaps'].shape[1]),
dtype=entry['gt_overlaps'].dtype
)
box_to_gt_ind_map = -np.ones(
(num_boxes), dtype=entry['box_to_gt_ind_map'].dtype
)
# Note: unlike in other places, here we intentionally include all gt
# rois, even ones marked as crowd. Boxes that overlap with crowds will
# be filtered out later (see: _filter_crowd_proposals).
gt_inds = np.where(entry['gt_classes'] > 0)[0]
if len(gt_inds) > 0:
gt_boxes = entry['boxes'][gt_inds, :]
gt_classes = entry['gt_classes'][gt_inds]
proposal_to_gt_overlaps = box_utils.bbox_overlaps(
boxes.astype(dtype=np.float32, copy=False),
gt_boxes.astype(dtype=np.float32, copy=False)
)
# Gt box that overlaps each input box the most
# (ties are broken arbitrarily by class order)
argmaxes = proposal_to_gt_overlaps.argmax(axis=1)
# Amount of that overlap
maxes = proposal_to_gt_overlaps.max(axis=1)
# Those boxes with non-zero overlap with gt boxes
I = np.where(maxes > 0)[0]
# Record max overlaps with the class of the appropriate gt box
gt_overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
box_to_gt_ind_map[I] = gt_inds[argmaxes[I]]
entry['boxes'] = np.append(
entry['boxes'],
boxes.astype(entry['boxes'].dtype, copy=False),
axis=0
)
entry['gt_classes'] = np.append(
entry['gt_classes'],
np.zeros((num_boxes), dtype=entry['gt_classes'].dtype)
)
entry['seg_areas'] = np.append(
entry['seg_areas'],
np.zeros((num_boxes), dtype=entry['seg_areas'].dtype)
)
entry['gt_overlaps'] = np.append(
entry['gt_overlaps'].toarray(), gt_overlaps, axis=0
)
entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps'])
entry['is_crowd'] = np.append(
entry['is_crowd'],
np.zeros((num_boxes), dtype=entry['is_crowd'].dtype)
)
entry['box_to_gt_ind_map'] = np.append(
entry['box_to_gt_ind_map'],
box_to_gt_ind_map.astype(
entry['box_to_gt_ind_map'].dtype, copy=False
)
)
def _filter_crowd_proposals(roidb, crowd_thresh):
"""Finds proposals that are inside crowd regions and marks them as
overlap = -1 with each ground-truth rois, which means they will be excluded
from training.
"""
for entry in roidb:
gt_overlaps = entry['gt_overlaps'].toarray()
crowd_inds = np.where(entry['is_crowd'] == 1)[0]
non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
continue
crowd_boxes = box_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
non_gt_boxes = box_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
iscrowd_flags = [int(True)] * len(crowd_inds)
ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd_flags)
bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
gt_overlaps[non_gt_inds[bad_inds], :] = -1
entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps)
def _add_class_assignments(roidb):
"""Compute object category assignment for each box associated with each
roidb entry.
"""
for entry in roidb:
gt_overlaps = entry['gt_overlaps'].toarray()
# max overlap with gt over classes (columns)
max_overlaps = gt_overlaps.max(axis=1)
# gt class that had the max overlap
max_classes = gt_overlaps.argmax(axis=1)
entry['max_classes'] = max_classes
entry['max_overlaps'] = max_overlaps
# sanity checks
# if max overlap is 0, the class must be background (class 0)
zero_inds = np.where(max_overlaps == 0)[0]
assert all(max_classes[zero_inds] == 0)
# if max overlap > 0, the class must be a fg class (not class 0)
nonzero_inds = np.where(max_overlaps > 0)[0]
assert all(max_classes[nonzero_inds] != 0)
def _sort_proposals(proposals, id_field):
"""Sort proposals by the specified id field."""
order = np.argsort(proposals[id_field])
fields_to_sort = ['boxes', id_field, 'scores']
for k in fields_to_sort:
proposals[k] = [proposals[k][i] for i in order]