-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_realtime.py
98 lines (77 loc) · 4.41 KB
/
test_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""General-purpose test script for image-to-image translation.
Once you have trained your model with train.py, you can use this script to test the model.
It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'.
It first creates model and dataset given the option. It will hard-code some parameters.
It then runs inference for '--num_test' images and save results to an HTML file.
Example (You need to train models first or download pre-trained models from our website):
Test a CycleGAN model (both sides):
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Test a CycleGAN model (one side only):
python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout
The option '--model test' is used for generating CycleGAN results only for one side.
This option will automatically set '--dataset_mode single', which only loads the images from one set.
On the contrary, using '--model cycle_gan' requires loading and generating results in both directions,
which is sometimes unnecessary. The results will be saved at ./results/.
Use '--results_dir <directory_path_to_save_result>' to specify the results directory.
Test a pix2pix model:
python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/test_options.py for more test options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import os
import torch
import numpy as np
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util import util
import cv2
if __name__ == '__main__':
torch.backends.cudnn.enabled = False
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
# test with eval mode. This only affects layers like batchnorm and dropout.
# For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode.
# For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout.
if opt.eval:
model.eval()
if os.path.isfile(opt.videosource):
src = os.path.abspath(opt.videosource)
else:
src = int(opt.videosource)
webcam = cv2.VideoCapture(src)
cv2.namedWindow("cam-input")
cv2.namedWindow("cam-output")
data = {"A": None, "A_paths": None}
while True:
success, input_image = webcam.read()
if not success:
print("Could not get an image. Please check your video source")
break
cv2.imshow("cam-input", input_image)
input_image = cv2.resize(input_image, (256, 256))
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = np.asarray([input_image])
input_image = np.transpose(input_image, (0, 3, 1, 2))
data['A'] = torch.FloatTensor(input_image)
model.set_input(data) # unpack data from data loader
model.test() # run inference
result_image = model.get_current_visuals()['fake']
#print(result_image)
result_image = util.tensor2im(result_image)
result_image = cv2.cvtColor(np.array(result_image), cv2.COLOR_RGB2BGR)
result_image = cv2.resize(result_image, (512, 512))
cv2.imshow("cam-output", result_image)
k = cv2.waitKey(1)
if k == 27 or k == ord('q'):
break
cv2.destroyWindow("cam-input")
cv2.destroyWindow("cam-output")