-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
152 lines (129 loc) · 7.25 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include <math.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <stdlib.h>
#include <ctime>
#include "user-input.h"
#include "pixel.h"
#include "CImg/CImg.h"
using namespace std;
using namespace cimg_library;
// Compile: g++ main.cpp -o SOFM.exe pixel.h user-input.h -I CImg/ -lgdi32 -Wl,--stack,100000000
int main(){
// Frequency to save a new image of the map
int imgOutputFreq = 100;
int numImages = 2;
//Gathering Dimensions of SOFM
int map_width = get_integer_input("Width of SOFM", 50, 2000);
int map_height = get_integer_input("Height of SOFM", 50, 2000);
// Gathering Learning Parameters for the SOFM
int num_epochs = get_integer_input("Number of Epochs", 1, 100000);
float neighbourhood_radius = get_float_input("Neighbourhood Radius", 1, 150);
float learning_rate = get_float_input("Learning Rate", 0, 1.0);
// For timing execution
clock_t start = clock();
// rand init
// Creates an array of size map_width by map_height with randomly initialized pixels whose RGB colour is respresented as a value between 0 and 1.
pixel map_arr[map_width][map_height];
CImg<unsigned char> map_image(map_width, map_height, 1, 3, 0); // For image representation of map_arr
for (int i = 0; i < map_width; i++){
for (int j = 0; j < map_height; j++){
pixel new_pixel;
map_arr[i][j] = new_pixel;
map_arr[i][j].set_coordinates(i, j);
float rand_colour[] = {(int)(new_pixel.get_red() * 255), (int)(new_pixel.get_green() * 255), (int)(new_pixel.get_blue() * 255)};
map_image.draw_point(i, j, rand_colour);
}
}
/* // Displays an image representation of the map_arr on a GUI.
CImgDisplay displayer (map_image, "SOFM", 1);
while (!displayer.is_closed()){
displayer.wait();
}
*/
// Saves the training data for the SOFM.
map_image.save_bmp("images/1.bmp");
// Begins "Training" on the SOFM over num_epochs
for(int this_epoch = 1; this_epoch <= num_epochs; this_epoch++){
if(this_epoch % imgOutputFreq == 0){
std::stringstream ss;
ss << "images/" << numImages << ".bmp";
std::string filename;
ss >> filename;
const char * c = filename.c_str();
map_image.save_bmp(c);
numImages++;
}
pixel rand_pixel; // Generates randomly initialized pixel to train the SOFM on.
// find BMU
// Finds the pixel in the map_arr that best matches the rand_pixel
const float FLOAT_MAX = numeric_limits<float>::max();
pixel BMU(0, 0, 0);
float best_distance = FLOAT_MAX;
for(int i = 0; i < map_width; i++){
for (int j = 0; j < map_height; j++){
if(rand_pixel.getDistance(map_arr[i][j]) < best_distance){
BMU = map_arr[i][j];
best_distance = rand_pixel.getDistance(map_arr[i][j]);
BMU.set_coordinates(i, j);
}
}
}
float a = pow(exp(1.0), (-1 * (((this_epoch-1)/(num_epochs)))));
// Calculates the Learning Rate for this Epoch
float epoch_lr = learning_rate * a;
// Calculates the Neighbourhood Radius for this Epoch
int epoch_nradius = ceil(neighbourhood_radius * a);
if (epoch_nradius < 1){
epoch_nradius = 1;
}
// Updates the BMU's RGB Values
float epoch_red = (BMU.get_red() + epoch_lr * (rand_pixel.get_red() - BMU.get_red()));
float epoch_green = (BMU.get_green() + epoch_lr * (rand_pixel.get_green() - BMU.get_green()));
float epoch_blue = (BMU.get_blue() + epoch_lr * (rand_pixel.get_blue() - BMU.get_blue()));
map_arr[BMU.get_x_coord()][BMU.get_y_coord()].set_RGB(epoch_red, epoch_green, epoch_blue);
// Updates BMU's' Colour in Image
float new_colour[] = {(epoch_red * 255), (epoch_green * 255), (epoch_blue * 255)};
map_image.draw_point(BMU.get_x_coord(), BMU.get_y_coord(), new_colour);
// Updates the BMU's Neighbour's
for (int y = BMU.get_y_coord() - neighbourhood_radius; y < BMU.get_y_coord() + neighbourhood_radius; y++){
for (int x = BMU.get_x_coord(); (x - BMU.get_x_coord()) * (x - BMU.get_x_coord()) + (y - BMU.get_y_coord()) * (y - BMU.get_y_coord()) <= neighbourhood_radius * neighbourhood_radius; x--){
if(!((y == BMU.get_y_coord()) && (x == BMU.get_x_coord())) && (y < map_height) && (y >= 0) && (x < map_width) && (x >= 0)){
float neighbourhood_multiplier = pow(exp(1), -1 * (map_arr[x][y].getDistance(BMU) * map_arr[x][y].getDistance(BMU)) / (2 * epoch_nradius * epoch_nradius));
float updated_red = (map_arr[x][y].get_red() + neighbourhood_multiplier * epoch_lr * (BMU.get_red() - map_arr[x][y].get_red()));
float updated_green = (map_arr[x][y].get_green() + neighbourhood_multiplier * epoch_lr * (BMU.get_green() - map_arr[x][y].get_green()));
float updated_blue = (map_arr[x][y].get_blue() + neighbourhood_multiplier * epoch_lr * (BMU.get_blue() - map_arr[x][y].get_blue()));
map_arr[x][y].set_RGB(updated_red, updated_green, updated_blue);
// Updates BMU's' Colour in Image
float updated_colour[] = {(updated_red * 255), (updated_green * 255), (updated_blue * 255)};
map_image.draw_point(x, y, updated_colour);
}
}
for (int x = BMU.get_x_coord() + 1; (x - BMU.get_x_coord()) * (x - BMU.get_x_coord()) + (y - BMU.get_y_coord()) * (y - BMU.get_y_coord()) <= neighbourhood_radius * neighbourhood_radius; x++){
if(!((y == BMU.get_y_coord()) && (x == BMU.get_x_coord())) && (y < map_height) && (y >= 0) && (x < map_width) && (x >= 0)){
float neighbourhood_multiplier = pow(exp(1), -1 * ((map_arr[x][y].getDistance(BMU) * map_arr[x][y].getDistance(BMU)) / (2 * epoch_nradius * epoch_nradius)));
float updated_red = (map_arr[x][y].get_red() + neighbourhood_multiplier * epoch_lr * (BMU.get_red() - map_arr[x][y].get_red()));
float updated_green = (map_arr[x][y].get_green() + neighbourhood_multiplier * epoch_lr * (BMU.get_green() - map_arr[x][y].get_green()));
float updated_blue = (map_arr[x][y].get_blue() + neighbourhood_multiplier * epoch_lr * (BMU.get_blue() - map_arr[x][y].get_blue()));
map_arr[x][y].set_RGB(updated_red, updated_green, updated_blue);
// Updates BMU's' Colour in Image
float updated_colour[] = {(updated_red * 255), (updated_green * 255), (updated_blue * 255)};
map_image.draw_point(x, y, updated_colour);
}
}
}
}
// Saves the training data for the SOFM.
std::stringstream ss;
ss << "images/" << numImages << ".bmp";
std::string filename;
ss >> filename;
const char * c = filename.c_str();
map_image.save_bmp(c);
cout << "Output Saved!" << endl;
double duration = (clock() - start) / (double)CLOCKS_PER_SEC;
std::cout<<"Execution time: "<< duration <<'\n';
std::system("ffmpeg -f image2 -framerate 10 -i images/%d.bmp out.gif");
return 0;
}