Skip to content

Latest commit

 

History

History
56 lines (41 loc) · 1.52 KB

README.md

File metadata and controls

56 lines (41 loc) · 1.52 KB

ImmuDef

Workflow

Package: ImmuDef: A Novel Method for Quantitative Evaluation of Anti-infection Immune Defense Function and its Application

We created a python package called "ImmuDef" that uses RNA-seq data to compute quantitative assessments of an individual's immune defense function.

Requirements

Python Package Requirements

  • Python 3.10
  • scikit-learn 1.2.2
  • numpy 1.23.5
  • pandas 1.5.3

R Package Requirements

  • R 4.3.2
  • getopt 1.20.4
  • tidyverse 2.0.0
  • GSVA 1.50.1
  • clusterProfiler 4.10.1
  • msigdbr 7.5.1

Install Packages

  • pip install git+https://github.com/GuoBioinfoLab/ImmuDef.git

Test

Run a test by python ./main.py

Transfer Learn to Your Own Dataset

  • Prepare your dataset as a csv file which is ssGSEA data or RNA-seq data.

Start Compution

  • Import this package. from immune_score.score_caculator import Immune_Score_Caculator
  • Read your csv file as a pandas.DataFrame. data = pd.read_csv('Your_data', index_col=0).
  • Compute immune scores. isc = Immune_Score_Caculator()
  • Set data_type to 'Matrix' if your .csv files are RNA-seq data. immune_scores = isc.score_compute(data=data, data_type='Matrix', use_all_to_nor=True)
  • Set data_type to 'ssGSEA' if your .csv files are already ssGSEA Data. immune_scores = isc.score_compute(data=data, data_type='Matrix', use_all_to_nor=True)

Cite

If you make use of the code/experiment in your work, please cite our paper (Bibtex below).

@article{ title={''}, author={''}, year={2024} }